Manufacturing Engineering & Technology
7th Edition
ISBN: 9780133128741
Author: Serope Kalpakjian, Steven Schmid
Publisher: Prentice Hall
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 2, Problem 80SDP
In tension testing of specimens,
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Your manager asked you to explain the difference between three-point bending test and four-pointbending test by using a standard specimen each one has the following dimensions:1. Force = 30 KN.2. Thickness= 5 cm.3. Width = 10 cm.4. Length = 25 cm.Calculate the stress on each specimen then justify your answer
In True stress-true-strain curve in tension of solid metal cylinder 45 mm high and 8 mm in diameter, two
pairs of values of stress and strain were given for the specimen metal after it had yielded (1) true stress =
217 MPa, and true strain = 0.35; and (2) true stress = 259 MPa, and true strain = 0.68. Based on these data
points, determine the following:
a) The average flow stress that the metal experiences if it is subjected to a stress that is equal to its
strength coefficient K.
b) The work done that the metal experiences if it is subjected to elongation in height of 45%
c) If during the deformation the relative speed = 20 mm/s, determine the strain rate at h = 50 mm and
h = 70 mm.
The data shown in the table below were obtained from a tensile test of high-strength steel. The test specimen had a diameter of 13mm and a gage length of 50mm. At fracture, the elongation between the gage marks was 3.0mm and the minimum diameter was 10.7mm.
Plot the conventional stress-strain curve for the steel and determine the propotional limit, modulus of elasticity (i.e the slope of the initial part of the stress-strain curve), yield stress at 0.1% offset, ultimate stress, percent elongation in 50mm, and percent reduction area.
TENSILE-TEST DATA
Load(kN)
Elongation(mm)
5
0.005
10
0.015
30
0.048
50
0.084
60
0.099
64.5
0.109
67.0
0.119
68.0
0.137
69.0
0.160
70.0
0.229
72.0
0.259
76.0
0.330
84.0
0.584
92.0
0.853
100.0
1.288
112.0
2.814
113.0
Fracture
Chapter 2 Solutions
Manufacturing Engineering & Technology
Ch. 2 - Distinguish between engineering stress and true...Ch. 2 - In a stress-strain curve, what is the proportional...Ch. 2 - Describe the events that take place when a...Ch. 2 - What is ductility, and how is it measured?Ch. 2 - In the equation =Kn, which represents the true...Ch. 2 - What is strain-rate sensitivity, and how is it...Ch. 2 - What test can measure the properties of a material...Ch. 2 - What testing procedures can be used to measure the...Ch. 2 - Describe the differences between brittle and...Ch. 2 - What is hardness? Explain.
Ch. 2 - Describe the features of a Rockwell hardness test.Ch. 2 - What is a Leeb test? How is it different from a...Ch. 2 - Differentiate between stress relaxation and creep.Ch. 2 - Describe the difference between elastic and...Ch. 2 - Explain what uniform elongation means in tension...Ch. 2 - Describe the difference between deformation rate...Ch. 2 - Describe the difficulties involved in conducting a...Ch. 2 - What is Hookes law? Youngs modulus? Poissons...Ch. 2 - Describe the difference between transgranular and...Ch. 2 - What is the reason that yield strength is...Ch. 2 - Why does the fatigue strength of a specimen or...Ch. 2 - If striations are observed under microscopic...Ch. 2 - What is an Izod test? Why are Izod tests useful?Ch. 2 - Why does temperature increase during plastic...Ch. 2 - What is residual stress? How can residual stresses...Ch. 2 - On the same scale for stress, the tensile true...Ch. 2 - What are the similarities and differences between...Ch. 2 - Can a material have a negative Poissons ratio?...Ch. 2 - It has been stated that the higher the value of m,...Ch. 2 - Explain why materials with high m values, such as...Ch. 2 - With a simple sketch, explain whether it is...Ch. 2 - Explain why the difference between engineering...Ch. 2 - Consider an elastomer, such as a rubber band. This...Ch. 2 - If a material (such as aluminum) does not have an...Ch. 2 - What role, if any, does friction play in a...Ch. 2 - Which hardness tests and scales would you use for...Ch. 2 - Consider the circumstance where a Vickers hardness...Ch. 2 - Which of the two tests, tension or compression,...Ch. 2 - List and explain briefly the conditions that...Ch. 2 - List the factors that you would consider in...Ch. 2 - On the basis of Fig. 2.5, can you calculate the...Ch. 2 - If a metal tension-test specimen is rapidly pulled...Ch. 2 - Comment on your observations regarding the...Ch. 2 - Will the disk test be applicable to a ductile...Ch. 2 - What hardness test is suitable for determining the...Ch. 2 - Wire rope consists of many wires that bend and...Ch. 2 - A statistical sampling of Rockwell C hardness...Ch. 2 - In a Brinell hardness test, the resulting...Ch. 2 - Some coatings are extremely thinsome as thin as a...Ch. 2 - Select an appropriate hardness test for each of...Ch. 2 - A paper clip is made of wire 0.5 mm in diameter....Ch. 2 - A 250-mm-long strip of metal is stretched in two...Ch. 2 - Identify the two materials in Fig. 2.5 that have...Ch. 2 - Plot the ultimate strength vs. stiffness for the...Ch. 2 - If you remove the layer of material ad from the...Ch. 2 - Prove that the true strain at necking equals the...Ch. 2 - Percent elongation is always defined in terms of...Ch. 2 - You are given the K and n values of two different...Ch. 2 - A cable is made of two strands of different...Ch. 2 - On the basis of the information given in Fig. 2.5,...Ch. 2 - In a disk test performed on a specimen 1.00 in. in...Ch. 2 - A piece of steel has a hardness of 300 HB....Ch. 2 - A metal has the following properties: UTS = 70,000...Ch. 2 - Using only Fig. 2.5, calculate the maximum load in...Ch. 2 - Estimate the modulus of resilience for a highly...Ch. 2 - A metal has a strength coefficient K = 100,000 psi...Ch. 2 - Plot the true stresstrue strain curves for the...Ch. 2 - The design specification for a metal requires a...Ch. 2 - Calculate the major and minor pyramid angles for a...Ch. 2 - If a material has a target hardness of 300 HB,...Ch. 2 - A Rockwell A test was conducted on a material and...Ch. 2 - For a cold-drawn 0.5% carbon steel, will a...Ch. 2 - A material is tested in tension. Over a 1-in. gage...Ch. 2 - A horizontal rigid bar cc is subjecting specimen a...Ch. 2 - List and explain the desirable mechanical...Ch. 2 - When making a hamburger, you may have observed the...Ch. 2 - An inexpensive claylike material called Silly...Ch. 2 - In tension testing of specimens, mechanical and...Ch. 2 - Demonstrate the impact toughness of a piece of...Ch. 2 - Using a large rubber band and a set of weights,...Ch. 2 - Find or prepare some solid circular pieces of...Ch. 2 - Take several rubber bands and pull them at...Ch. 2 - Devise a simple fixture for conducting the bend...Ch. 2 - By pressing a small ball bearing against the top...Ch. 2 - Describe your observations regarding Fig. 2.14c.Ch. 2 - Embed a small steel ball in a soft block of...Ch. 2 - Devise a simple experiment, and perform tests on...Ch. 2 - Obtain some solid and some tubular metal pieces,...Ch. 2 - Explain how you would obtain an estimate of the...Ch. 2 - Without using the words stress or strain, define...Ch. 2 - We know that it is relatively easy to subject a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The following data are obtained from a tensile test of a copper specimen. - The load at the yield point is 157 kN. - Length of the specimen is 23 mm. - The yield strength is 89 kN/mm2. - The percentage of elongation is 45 %. Determine the following Diameter of the specimen, Final length of the specimen, Stress under an elastic load of 18 kN, Young's Modulus if the elongation is 1.3 mm at 18 kN and Final diameter if the percentage of reduction in area is 25 %. Fine this ans 1-Initial Cross-sectional Area (in mm2) 2-The Diameter of the Specimen (in mm) 3-Final Length of the Specimen (in mm) 4-Stress at the elastic load (in N/mm2) 5-Young's Modulus of the Specimen (in N/mm2) 6-Final Area of the Specimen at Fracture (in mm) 7-Final Diameter of the Specimen after Fracture (in mm)arrow_forwardThe following data are obtained from a tensile test of a copper specimen. - The load at the yield point is 143 kN. - Length of the specimen is 29 mm. - The yield strength is 71 kN/mm2. - The percentage of elongation is 48 %. Determine the following Diameter of the specimen, Final length of the specimen, Stress under an elastic load of 18 kN, Young's Modulus if the elongation is 1 mm at 18 kN and Final diameter if the percentage of reduction in area is 29 %. Initial Cross-sectional Area 2.01 mm2. The Diameter of the Specimen 1.59 mm. Final Length of the Specimen 42.92 mm. Stress at the elastic load 8955.22 N/mm2. Find: Young's Modulus of the Specimen (in N/mm2) Final Area of the Specimen at Fracture (in mm) Final Diameter of the Specimen after Fracture (in mm)arrow_forwardThe following data are obtained from a tensile test of a copper specimen. - The load at the yield point is 143 kN. - Length of the specimen is 29 mm. - The yield strength is 71 kN/mm2. - The percentage of elongation is 48 %. Determine the following Diameter of the specimen, Final length of the specimen, Stress under an elastic load of 18 kN, Young's Modulus if the elongation is 1 mm at 18 kN and Final diameter if the percentage of reduction in area is 29 %. FIND: Young's Modulus of the Specimen (in N/mm2) Final Area of the Specimen at Fracture (in mm) Final Diameter of the Specimen after Fracture (in mm)arrow_forward
- QUESTION ONE (a) Distinguish between physical and mechanical properties of materials. Give two examples of each. (b) Explain why in a stress versus strain curve, the plastic portion of the graph after necking tends to drop (ie the force drops) despite that the tension is increasing. (c) A tensile test uses a copper test specimen that has a gauge length of 80 mm and a di.ameter of 16 mm. During the test, the specimen yields under a load of 9,600 N. The corresponding gauge length is 80.24 mm. The maximum load reached is 148,000 N at a gauge length of 94.2 mm, while fracture happens at a load of 12,800 N and a gauge length of 102 6 mm Determine the following: (i) Modulus of elasticity E (ii) Yield strength Oy (iii) Fracture strength, ơt (iv) Tensile strength OTs. 1arrow_forwardThe following results were obtained in a tensile test on a mild steel specimen of original diameter 28 mm and gauge length 56 mm. Load at limit of proportionality : 96 kN Extension at 96 kN load : 0.068 mm Load at yield point : 105 kN Maximum load : 170 kN When the two parts were fitted together after being broken, the length between gauge length was found to be 65.8 mm and the diameter at the neck was 18.8 mm. Calculate: (a). E, (b).σy, (c).σu, (d). PRIA and PEarrow_forwardTensile test is a method to investigate the elasticity of a material. A test specimen is placed between two clamps and these clamps will move in opposite directions, hence straining the test specimen. This experiment will yield a stress-strain curve that shows each of the stages of the specimen for every load is applied. With an aid of sketching diagrams, describe the stages that the specimen experiences before it breaks, and relate it with the stress-strain curve. It is expected that each stage comes with a sketching of the specimen and explanation of the current stage.arrow_forward
- Draw a typical stress vs strain tensile test curve for the following materials (two seperate graphs) and label the axis. A ductile metallic test specimen that is stretched to failure displaying a characteristic yield point and show the following parts on the curve. 1- Yield point 2- Ultimate Tensile Strength 3- Breaking point 4- Elastic Region 5- Plastic Region 6- Necking regionarrow_forwardAnnealed low-carbon steel has a flow curve with strength coefficient = 80,000 lb/in2 and strain-hardening exponent = 0.25. A tensile test specimen with gage length = 2.0 in is stretched to a length = 3.5 in. Determine the flow stress and average flow stress that the metal experienced during this deformation.arrow_forwardThe data below are for a thin steel wire suitable for use as a guitar string. Ultimate tensile stress: 1.8 x 109 Pa Young Modulus: 2.2 x 1011 Pa Cross-sectional area: 2.0 x 10-7 m2 In a tensile test, a specimen of the wire, of original length 1.5 m, is stretched until it breaks. Assuming the wire obeys Hooke’s law throughout, calculate the extension of the specimen immediately before breaking.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
An Introduction to Stress and Strain; Author: The Efficient Engineer;https://www.youtube.com/watch?v=aQf6Q8t1FQE;License: Standard YouTube License, CC-BY