Manufacturing Engineering & Technology
7th Edition
ISBN: 9780133128741
Author: Serope Kalpakjian, Steven Schmid
Publisher: Prentice Hall
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 2, Problem 86SDP
Find or prepare some solid circular pieces of brittle materials, such as chalk, ceramics, etc. and subject them to the type of test shown in Fig. 2.9 by using the jaws of a simple vise. Describe your observations as to how the materials fracture. Repeat the tests, using ductile materials, such as clay, soft metals, etc., and describe your observations.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A three-point transverse bending test was performed on a glass specimen having a square
cross-section of 18.5 mm length on each edge. The specimen fractured at a load of 4530
N when the distance between support points was 42 mm.
A second test is to be performed on another specimen of this same glass material, but one
that has a circular cross-section. What minimum specimen diameter is required to ensure
that fracture will not occur when a load of 3480 N is applied? Assume that the support
separation is maintained at 42 mm.
mm
A three point bend test is performed on a block of ZrO2 that is 8 in.long,0.50.in.wide,and 0.25 in.thick and is resting on two supports 4 in.apart.when a force of 400 lb is applied ,the specimen deflects 0.037 in.and breaks.Calculate
(a) the flexural strength ;and
(b) the flexural modulus,assuming that no plastic deformation occurs.
Draw an illustration showing the five stages of ductile tensile fracture, then briefly explain the phenomenon happening on different stages
Chapter 2 Solutions
Manufacturing Engineering & Technology
Ch. 2 - Distinguish between engineering stress and true...Ch. 2 - In a stress-strain curve, what is the proportional...Ch. 2 - Describe the events that take place when a...Ch. 2 - What is ductility, and how is it measured?Ch. 2 - In the equation =Kn, which represents the true...Ch. 2 - What is strain-rate sensitivity, and how is it...Ch. 2 - What test can measure the properties of a material...Ch. 2 - What testing procedures can be used to measure the...Ch. 2 - Describe the differences between brittle and...Ch. 2 - What is hardness? Explain.
Ch. 2 - Describe the features of a Rockwell hardness test.Ch. 2 - What is a Leeb test? How is it different from a...Ch. 2 - Differentiate between stress relaxation and creep.Ch. 2 - Describe the difference between elastic and...Ch. 2 - Explain what uniform elongation means in tension...Ch. 2 - Describe the difference between deformation rate...Ch. 2 - Describe the difficulties involved in conducting a...Ch. 2 - What is Hookes law? Youngs modulus? Poissons...Ch. 2 - Describe the difference between transgranular and...Ch. 2 - What is the reason that yield strength is...Ch. 2 - Why does the fatigue strength of a specimen or...Ch. 2 - If striations are observed under microscopic...Ch. 2 - What is an Izod test? Why are Izod tests useful?Ch. 2 - Why does temperature increase during plastic...Ch. 2 - What is residual stress? How can residual stresses...Ch. 2 - On the same scale for stress, the tensile true...Ch. 2 - What are the similarities and differences between...Ch. 2 - Can a material have a negative Poissons ratio?...Ch. 2 - It has been stated that the higher the value of m,...Ch. 2 - Explain why materials with high m values, such as...Ch. 2 - With a simple sketch, explain whether it is...Ch. 2 - Explain why the difference between engineering...Ch. 2 - Consider an elastomer, such as a rubber band. This...Ch. 2 - If a material (such as aluminum) does not have an...Ch. 2 - What role, if any, does friction play in a...Ch. 2 - Which hardness tests and scales would you use for...Ch. 2 - Consider the circumstance where a Vickers hardness...Ch. 2 - Which of the two tests, tension or compression,...Ch. 2 - List and explain briefly the conditions that...Ch. 2 - List the factors that you would consider in...Ch. 2 - On the basis of Fig. 2.5, can you calculate the...Ch. 2 - If a metal tension-test specimen is rapidly pulled...Ch. 2 - Comment on your observations regarding the...Ch. 2 - Will the disk test be applicable to a ductile...Ch. 2 - What hardness test is suitable for determining the...Ch. 2 - Wire rope consists of many wires that bend and...Ch. 2 - A statistical sampling of Rockwell C hardness...Ch. 2 - In a Brinell hardness test, the resulting...Ch. 2 - Some coatings are extremely thinsome as thin as a...Ch. 2 - Select an appropriate hardness test for each of...Ch. 2 - A paper clip is made of wire 0.5 mm in diameter....Ch. 2 - A 250-mm-long strip of metal is stretched in two...Ch. 2 - Identify the two materials in Fig. 2.5 that have...Ch. 2 - Plot the ultimate strength vs. stiffness for the...Ch. 2 - If you remove the layer of material ad from the...Ch. 2 - Prove that the true strain at necking equals the...Ch. 2 - Percent elongation is always defined in terms of...Ch. 2 - You are given the K and n values of two different...Ch. 2 - A cable is made of two strands of different...Ch. 2 - On the basis of the information given in Fig. 2.5,...Ch. 2 - In a disk test performed on a specimen 1.00 in. in...Ch. 2 - A piece of steel has a hardness of 300 HB....Ch. 2 - A metal has the following properties: UTS = 70,000...Ch. 2 - Using only Fig. 2.5, calculate the maximum load in...Ch. 2 - Estimate the modulus of resilience for a highly...Ch. 2 - A metal has a strength coefficient K = 100,000 psi...Ch. 2 - Plot the true stresstrue strain curves for the...Ch. 2 - The design specification for a metal requires a...Ch. 2 - Calculate the major and minor pyramid angles for a...Ch. 2 - If a material has a target hardness of 300 HB,...Ch. 2 - A Rockwell A test was conducted on a material and...Ch. 2 - For a cold-drawn 0.5% carbon steel, will a...Ch. 2 - A material is tested in tension. Over a 1-in. gage...Ch. 2 - A horizontal rigid bar cc is subjecting specimen a...Ch. 2 - List and explain the desirable mechanical...Ch. 2 - When making a hamburger, you may have observed the...Ch. 2 - An inexpensive claylike material called Silly...Ch. 2 - In tension testing of specimens, mechanical and...Ch. 2 - Demonstrate the impact toughness of a piece of...Ch. 2 - Using a large rubber band and a set of weights,...Ch. 2 - Find or prepare some solid circular pieces of...Ch. 2 - Take several rubber bands and pull them at...Ch. 2 - Devise a simple fixture for conducting the bend...Ch. 2 - By pressing a small ball bearing against the top...Ch. 2 - Describe your observations regarding Fig. 2.14c.Ch. 2 - Embed a small steel ball in a soft block of...Ch. 2 - Devise a simple experiment, and perform tests on...Ch. 2 - Obtain some solid and some tubular metal pieces,...Ch. 2 - Explain how you would obtain an estimate of the...Ch. 2 - Without using the words stress or strain, define...Ch. 2 - We know that it is relatively easy to subject a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 1. Describe tensile test in detail considering the steps. Define stress, strain (equations and units), elasticity modulus, elastic and plastic zones, toughness, and resilience of a material. Additionally, describe the difference between ductile and brittle material. Demonstrate a stress- strain curve to explain your answers.arrow_forwardExample A 13 mm-diameter tensile specimen has a 50 mm gage length. The load corresponding to the 0.2 percent offset is 6800 kg and the maximum load is 1800 kg. Fracture occurs at 7300 kg. The diameter after fracture is 8 mm and the gage length at fracture is 65 mm. calculate the standard properties of the material from the tension test.arrow_forwardA sample of giant reed is shaped into a beam with a square cross section of 15.5 mm by 15.5 mm. Two supports placed 22.1 mm apart support thesample and a load is applied halfway between the support points in order to test the force required to fracture the sample. If ultimate tensile strength is912 MPa, what would be the force F (newtons) required to cause failure?arrow_forward
- Explain the differences between a ductile material and brittle material. Also, draw their strain-stress diagrams.arrow_forwardA sample of giant reed is shaped into a beam with a square cross section of 15.5 mm by 15.5 mm. Two supports placed 22.1 mm apart support the sample and a load is applied halfway between the support points in order to test the force required to fracture the sample. If ultimate tensile strength is 912 MPa, what would be the force F (newtons) required to cause failure?arrow_forwardConsider a steel plate with a through-thickness edge crack like the one shown in Fig. 6.21f. The plate width (W) is 75 mm, and its thickness (t) is 12.0 mm. Furthermore, the plane-strain fracture toughness and yield strength values for this material are 80 MPa m1/2 and 1200 MPa, respectively. If the application in which the plate is used is expected to cause a stress of 300 MPa along the axis perpendicular to the crack, would you expect failure to occur if the crack length a is 15 mm? Explain.arrow_forward
- 3. How can you understand if a fracture is brittle or ductile? Briefly explain which experimental techniques can be used and how the results can be interpreted.arrow_forwardThe data shown in the table below were obtained from a tensile test of high-strength steel. The test specimen had a diameter of 13mm and a gage length of 50mm. At fracture, the elongation between the gage marks was 3.0mm and the minimum diameter was 10.7mm. Plot the conventional stress-strain curve for the steel and determine the propotional limit, modulus of elasticity (i.e the slope of the initial part of the stress-strain curve), yield stress at 0.1% offset, ultimate stress, percent elongation in 50mm, and percent reduction area. TENSILE-TEST DATA Load(kN) Elongation(mm) 5 0.005 10 0.015 30 0.048 50 0.084 60 0.099 64.5 0.109 67.0 0.119 68.0 0.137 69.0 0.160 70.0 0.229 72.0 0.259 76.0 0.330 84.0 0.584 92.0 0.853 100.0 1.288 112.0 2.814 113.0 Fracturearrow_forwardAn unknown specimen with an initial diameter of 5.25 mm experiences a reduction in diameter to 4.50 mm under a tensile load of 250 N. Calculate the engineering stress, engineering strain, true stress, and true strain at this load. Assume that the deformation is uniform throughout the entire sample, and that the volume of the sample remains constant when being pulled in tension.arrow_forward
- A metallic rod with an initial diameter of 10 mm and an initial length of 50 mm is subjected to the tensile test. After the fracture, the final length was measured as 51.8 mm, and the final diameter was measured as 9.5 mm. (a) Calculate modulus of elasticity, (b) Calculate ultimate tensile strength, (c) Calculate elongation at fracture in %, (d) Calculate reduction of area in %, (e) Calculate true stress at maximum load, Calculate true strain at maximum load, (f) (g) Calculate strain hardening exponent, (h) Calculate strength coefficient. Load, N 0 3300 9900 18000 23000 16000* 16000 21500 24000 Elongation, mm 0.01 0.03 0.05 0.10 0.50 1.0 1.4 2* Fracture pointarrow_forwardMaterial Science please helparrow_forwardA material has a strength coefficient of 150,000 psi. At the onset of plastic deformation, the material had an 18 percent increase over its initial length, and at the beginning of non-uniform deformation, the material experienced an engineering strain of 0.58. Calculate the engineering and true strains at yield. Also, calculate the engineering and true strains at the point where a maximum engineering stress is experienced by the material. Determine the strain-hardening index. Calculate the ultimate tensile strength. Calculate the modulus of elasticity. Given: K = 150,000 psi 18% increase in length ey = 0.58 Want: ey =? eu =? n =? UTS =? E =? εy =? εu =?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Material Properties 101; Author: Real Engineering;https://www.youtube.com/watch?v=BHZALtqAjeM;License: Standard YouTube License, CC-BY