Manufacturing Engineering & Technology
7th Edition
ISBN: 9780133128741
Author: Serope Kalpakjian, Steven Schmid
Publisher: Prentice Hall
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 2, Problem 33QLP
Consider an elastomer, such as a rubber band. This material can undergo a large elastic deformation before failure, but after fracture it recovers completely to its original shape. Is this material brittle or ductile? Explain.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A titanium tube with an outside diameter of 25 mm and inside diameter of 20 mm and a length
of 200 mm. When an elastic uniaxial tensile force of 30 kN is applied to this tube along its
length, what is the final length of that tube? (Modulus of elasticity of Titanium is 105 GPa)
Define the given terms related to mechanical properties of materials.
1. Ductility
2. Elastic Limit
3. Elastomers
4. Extensometer
5. Hardness test
A titanium alloy specimen with an elastic modulus of 107 GPa and 3.9 mm in original diameter will experience elastic deformation when applied to a tensile load of 2695.2 N. Calculate the maximum length the specimen would reach if the maximum allowable elongation is 0.4 mm.
Chapter 2 Solutions
Manufacturing Engineering & Technology
Ch. 2 - Distinguish between engineering stress and true...Ch. 2 - In a stress-strain curve, what is the proportional...Ch. 2 - Describe the events that take place when a...Ch. 2 - What is ductility, and how is it measured?Ch. 2 - In the equation =Kn, which represents the true...Ch. 2 - What is strain-rate sensitivity, and how is it...Ch. 2 - What test can measure the properties of a material...Ch. 2 - What testing procedures can be used to measure the...Ch. 2 - Describe the differences between brittle and...Ch. 2 - What is hardness? Explain.
Ch. 2 - Describe the features of a Rockwell hardness test.Ch. 2 - What is a Leeb test? How is it different from a...Ch. 2 - Differentiate between stress relaxation and creep.Ch. 2 - Describe the difference between elastic and...Ch. 2 - Explain what uniform elongation means in tension...Ch. 2 - Describe the difference between deformation rate...Ch. 2 - Describe the difficulties involved in conducting a...Ch. 2 - What is Hookes law? Youngs modulus? Poissons...Ch. 2 - Describe the difference between transgranular and...Ch. 2 - What is the reason that yield strength is...Ch. 2 - Why does the fatigue strength of a specimen or...Ch. 2 - If striations are observed under microscopic...Ch. 2 - What is an Izod test? Why are Izod tests useful?Ch. 2 - Why does temperature increase during plastic...Ch. 2 - What is residual stress? How can residual stresses...Ch. 2 - On the same scale for stress, the tensile true...Ch. 2 - What are the similarities and differences between...Ch. 2 - Can a material have a negative Poissons ratio?...Ch. 2 - It has been stated that the higher the value of m,...Ch. 2 - Explain why materials with high m values, such as...Ch. 2 - With a simple sketch, explain whether it is...Ch. 2 - Explain why the difference between engineering...Ch. 2 - Consider an elastomer, such as a rubber band. This...Ch. 2 - If a material (such as aluminum) does not have an...Ch. 2 - What role, if any, does friction play in a...Ch. 2 - Which hardness tests and scales would you use for...Ch. 2 - Consider the circumstance where a Vickers hardness...Ch. 2 - Which of the two tests, tension or compression,...Ch. 2 - List and explain briefly the conditions that...Ch. 2 - List the factors that you would consider in...Ch. 2 - On the basis of Fig. 2.5, can you calculate the...Ch. 2 - If a metal tension-test specimen is rapidly pulled...Ch. 2 - Comment on your observations regarding the...Ch. 2 - Will the disk test be applicable to a ductile...Ch. 2 - What hardness test is suitable for determining the...Ch. 2 - Wire rope consists of many wires that bend and...Ch. 2 - A statistical sampling of Rockwell C hardness...Ch. 2 - In a Brinell hardness test, the resulting...Ch. 2 - Some coatings are extremely thinsome as thin as a...Ch. 2 - Select an appropriate hardness test for each of...Ch. 2 - A paper clip is made of wire 0.5 mm in diameter....Ch. 2 - A 250-mm-long strip of metal is stretched in two...Ch. 2 - Identify the two materials in Fig. 2.5 that have...Ch. 2 - Plot the ultimate strength vs. stiffness for the...Ch. 2 - If you remove the layer of material ad from the...Ch. 2 - Prove that the true strain at necking equals the...Ch. 2 - Percent elongation is always defined in terms of...Ch. 2 - You are given the K and n values of two different...Ch. 2 - A cable is made of two strands of different...Ch. 2 - On the basis of the information given in Fig. 2.5,...Ch. 2 - In a disk test performed on a specimen 1.00 in. in...Ch. 2 - A piece of steel has a hardness of 300 HB....Ch. 2 - A metal has the following properties: UTS = 70,000...Ch. 2 - Using only Fig. 2.5, calculate the maximum load in...Ch. 2 - Estimate the modulus of resilience for a highly...Ch. 2 - A metal has a strength coefficient K = 100,000 psi...Ch. 2 - Plot the true stresstrue strain curves for the...Ch. 2 - The design specification for a metal requires a...Ch. 2 - Calculate the major and minor pyramid angles for a...Ch. 2 - If a material has a target hardness of 300 HB,...Ch. 2 - A Rockwell A test was conducted on a material and...Ch. 2 - For a cold-drawn 0.5% carbon steel, will a...Ch. 2 - A material is tested in tension. Over a 1-in. gage...Ch. 2 - A horizontal rigid bar cc is subjecting specimen a...Ch. 2 - List and explain the desirable mechanical...Ch. 2 - When making a hamburger, you may have observed the...Ch. 2 - An inexpensive claylike material called Silly...Ch. 2 - In tension testing of specimens, mechanical and...Ch. 2 - Demonstrate the impact toughness of a piece of...Ch. 2 - Using a large rubber band and a set of weights,...Ch. 2 - Find or prepare some solid circular pieces of...Ch. 2 - Take several rubber bands and pull them at...Ch. 2 - Devise a simple fixture for conducting the bend...Ch. 2 - By pressing a small ball bearing against the top...Ch. 2 - Describe your observations regarding Fig. 2.14c.Ch. 2 - Embed a small steel ball in a soft block of...Ch. 2 - Devise a simple experiment, and perform tests on...Ch. 2 - Obtain some solid and some tubular metal pieces,...Ch. 2 - Explain how you would obtain an estimate of the...Ch. 2 - Without using the words stress or strain, define...Ch. 2 - We know that it is relatively easy to subject a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Express Hook's Law for non linear elastic material ? Explain in detail.arrow_forwardview Elastic Recovery After Plastic Deformation 5. A cylindrical specimen of a brass alloy 7.5 mm (0.30 in.) in diameter and 90.0 mm (3.54 in.) long is pulled in tension with a force of 6000 N (1350 lbf); the force is subsequently released. (a) Compute the final length of the specimen at this time. The tensile stress-strain behavior for this alloy is shown in Figure below. (b) Compute the final specimen length when the load is increased to 16,500 N (3700 lbf) and then released. 500 Stress (MPa) 400 300 200 100 Tensile strength 450 MPa (65,000 psi) MPa 200 100 0.10 I I 10³ psi 40 30 20 10 0.20 Strain 0.005 T Yield strength 250 MPa (36,000 psi) 0.30 1 70 60 50 40 30 20 10 0 0.40 Stress (10³ psi)arrow_forwardA new high stiffness plastic material has a length of 19.7 inches and a thickness of 3 mm and is being considered for use as a bone fixation plate. When subjected to a tensile load of 10000 N, the material stretches to a length of 19.88 inches. Please find the width of this material, which has a modulus of 4 GPa.arrow_forward
- Describe Hooke's Law. Make a sketch of stress-strain diagram for a plastic material (ductile material) and explain at least five points on the diagram.arrow_forwardAssume that Young's modulus for bone is 1.5x10^10 N/m2 and that a bone will fracture if more than 1.5x10^8 N/m2 is exerted. (a) What is the maximum force that can be exerted on the femur bone in the leg if it has a minimum effective diameter of 2.50 cm? (b) If a force of this magnitude is applied compressively, by how much does the 25.0-cm-long-bone shorten?arrow_forwardAt an axial load of 25 kN, a 50-mm-wide by 20-mm-thick polyimide polymer bar elongates 2.8 mm while the bar width contracts 0.29 mm. The bar is 190 mm long. At the 25-kN load, the stress in the polymer bar is less than its proportional limit. Determine (a) the modulus of elasticity. (b) Poisson's ratio. (c) the change in the bar thickness. Answers: (a) E= (b) v= (c) Athickness= i i GPa mmarrow_forward
- At an axial load of 24 kN, a 35-mm-wide by 15- mm-thick polyimide polymer bar elongates 3.0 mm while the bar width contracts 0.15 mm. The bar is 230 mm long. At the 24-kN load, the stress in the polymer bar is less than its proportional limit. Determine (a) the modulus of elasticity. (b) Poisson's ratio. (c) the change in the bar thickness. Answers: E= = V = IN Athickness= i GPa mmarrow_forwardA 3.048 m annealed rod with a cross-sectional area of 555 mm2 was extruded from a 5083-0 aluminum alloy and axially loaded. Under load, the length of the rod increased to 3.0518 m. No plastic deformation occurred. (a) Find the modulus of elasticity of the material and calculate its allowable tensile stress, assuming it to be 50% of the tensile yield stress. (b) Calculate the tensile stress and the axial load applied to the rod. (c) Compare the calculated tensile stress with the allowable tensile stress, and find the absolute value of elongation of the rod for the allowable stress.arrow_forwardDraw the stress-strain diagram and mark the regions. How can you use stress-strain diagrams in selecting the most appropriate material for an orthopedic biomaterial?arrow_forward
- A steel rod 22 mm in diameter and 1000 mm long is required to have an elastic strain energy of 90 N.m. What should be the yield strength of the material if its modulus of elasticity is 2.1x105 MPa? Hint: Elastic strain energy is related with the resilience of the material.arrow_forwardA sample of cross-linked natural rubber (polyisoprene) is found to have a shear modulus of 100 kPa at 20˚C. Determine the force needed to stretch a 20 mm diameter by 100 mm long rod to 300 mm (stretched in the length direction). What is the diameter of this rod of natural rubber under such a load?arrow_forwardA 30-mm-diameter popper rod is 1 m long with a yield strength of 70 MPa. Determine the axial force necessary to cause the diameter of the rod to reduce by 0.01 percent, assuming elastic deformation. Check that the elastic deformation assumption is valid by comparing the axial stress to the yield strength.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Relationship Between Elastic Constants and Connecting Equations; Author: Engineers Academy;https://www.youtube.com/watch?v=whW5PnM7Pug;License: Standard Youtube License