Manufacturing Engineering & Technology
7th Edition
ISBN: 9780133128741
Author: Serope Kalpakjian, Steven Schmid
Publisher: Prentice Hall
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 2, Problem 22RQ
If striations are observed under microscopic examination of a fracture surface, what do they suggest regarding the mode of fracture?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
On what does a tensile fracture generally depend?
In the tensile test experiment, one of the
following is correct regarding the final
fracture:
Select one:
O The fracture occurs in the middle of
the specimen and is inclined with
45°.
O The fracture occurs anywhere in the
smallest cross sectional-area of the
specimen and is perpendicular to the
direction of the load applied.
O Fracture occurs randomly and we
can never predict the shape of it
O The fracture occurs anywhere in the
smallest cross sectional-area of the
specimen and is inclined with 45°.
A material has a fracture toughness of 70.0 MPa-m0.5 and a yield
strength of 1200 MPa and is to be made into a large panel.
If the panel is stressed to one-half the yield stress, what is the maximum central crack size 7 that can be tolerated without catastrophic failure?
Express your answer to three significant figures and include the appropriate units.
1 =
μA
Value
Submit
Units
?
Previous Answers Request Answer
Chapter 2 Solutions
Manufacturing Engineering & Technology
Ch. 2 - Distinguish between engineering stress and true...Ch. 2 - In a stress-strain curve, what is the proportional...Ch. 2 - Describe the events that take place when a...Ch. 2 - What is ductility, and how is it measured?Ch. 2 - In the equation =Kn, which represents the true...Ch. 2 - What is strain-rate sensitivity, and how is it...Ch. 2 - What test can measure the properties of a material...Ch. 2 - What testing procedures can be used to measure the...Ch. 2 - Describe the differences between brittle and...Ch. 2 - What is hardness? Explain.
Ch. 2 - Describe the features of a Rockwell hardness test.Ch. 2 - What is a Leeb test? How is it different from a...Ch. 2 - Differentiate between stress relaxation and creep.Ch. 2 - Describe the difference between elastic and...Ch. 2 - Explain what uniform elongation means in tension...Ch. 2 - Describe the difference between deformation rate...Ch. 2 - Describe the difficulties involved in conducting a...Ch. 2 - What is Hookes law? Youngs modulus? Poissons...Ch. 2 - Describe the difference between transgranular and...Ch. 2 - What is the reason that yield strength is...Ch. 2 - Why does the fatigue strength of a specimen or...Ch. 2 - If striations are observed under microscopic...Ch. 2 - What is an Izod test? Why are Izod tests useful?Ch. 2 - Why does temperature increase during plastic...Ch. 2 - What is residual stress? How can residual stresses...Ch. 2 - On the same scale for stress, the tensile true...Ch. 2 - What are the similarities and differences between...Ch. 2 - Can a material have a negative Poissons ratio?...Ch. 2 - It has been stated that the higher the value of m,...Ch. 2 - Explain why materials with high m values, such as...Ch. 2 - With a simple sketch, explain whether it is...Ch. 2 - Explain why the difference between engineering...Ch. 2 - Consider an elastomer, such as a rubber band. This...Ch. 2 - If a material (such as aluminum) does not have an...Ch. 2 - What role, if any, does friction play in a...Ch. 2 - Which hardness tests and scales would you use for...Ch. 2 - Consider the circumstance where a Vickers hardness...Ch. 2 - Which of the two tests, tension or compression,...Ch. 2 - List and explain briefly the conditions that...Ch. 2 - List the factors that you would consider in...Ch. 2 - On the basis of Fig. 2.5, can you calculate the...Ch. 2 - If a metal tension-test specimen is rapidly pulled...Ch. 2 - Comment on your observations regarding the...Ch. 2 - Will the disk test be applicable to a ductile...Ch. 2 - What hardness test is suitable for determining the...Ch. 2 - Wire rope consists of many wires that bend and...Ch. 2 - A statistical sampling of Rockwell C hardness...Ch. 2 - In a Brinell hardness test, the resulting...Ch. 2 - Some coatings are extremely thinsome as thin as a...Ch. 2 - Select an appropriate hardness test for each of...Ch. 2 - A paper clip is made of wire 0.5 mm in diameter....Ch. 2 - A 250-mm-long strip of metal is stretched in two...Ch. 2 - Identify the two materials in Fig. 2.5 that have...Ch. 2 - Plot the ultimate strength vs. stiffness for the...Ch. 2 - If you remove the layer of material ad from the...Ch. 2 - Prove that the true strain at necking equals the...Ch. 2 - Percent elongation is always defined in terms of...Ch. 2 - You are given the K and n values of two different...Ch. 2 - A cable is made of two strands of different...Ch. 2 - On the basis of the information given in Fig. 2.5,...Ch. 2 - In a disk test performed on a specimen 1.00 in. in...Ch. 2 - A piece of steel has a hardness of 300 HB....Ch. 2 - A metal has the following properties: UTS = 70,000...Ch. 2 - Using only Fig. 2.5, calculate the maximum load in...Ch. 2 - Estimate the modulus of resilience for a highly...Ch. 2 - A metal has a strength coefficient K = 100,000 psi...Ch. 2 - Plot the true stresstrue strain curves for the...Ch. 2 - The design specification for a metal requires a...Ch. 2 - Calculate the major and minor pyramid angles for a...Ch. 2 - If a material has a target hardness of 300 HB,...Ch. 2 - A Rockwell A test was conducted on a material and...Ch. 2 - For a cold-drawn 0.5% carbon steel, will a...Ch. 2 - A material is tested in tension. Over a 1-in. gage...Ch. 2 - A horizontal rigid bar cc is subjecting specimen a...Ch. 2 - List and explain the desirable mechanical...Ch. 2 - When making a hamburger, you may have observed the...Ch. 2 - An inexpensive claylike material called Silly...Ch. 2 - In tension testing of specimens, mechanical and...Ch. 2 - Demonstrate the impact toughness of a piece of...Ch. 2 - Using a large rubber band and a set of weights,...Ch. 2 - Find or prepare some solid circular pieces of...Ch. 2 - Take several rubber bands and pull them at...Ch. 2 - Devise a simple fixture for conducting the bend...Ch. 2 - By pressing a small ball bearing against the top...Ch. 2 - Describe your observations regarding Fig. 2.14c.Ch. 2 - Embed a small steel ball in a soft block of...Ch. 2 - Devise a simple experiment, and perform tests on...Ch. 2 - Obtain some solid and some tubular metal pieces,...Ch. 2 - Explain how you would obtain an estimate of the...Ch. 2 - Without using the words stress or strain, define...Ch. 2 - We know that it is relatively easy to subject a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Are fatigue striations always visible on a fatigue fracture surface? If not, under what conditions are they likely to be present and under what conditions are they likely to be absent?arrow_forwardA brass specimen of the circular cross-section is fractured at 147 kN force and the final length of the specimen at fracture is 46 mm. The fracture strength of the specimen is found to be 79 kN/mm?. The percentage of elongation of the specimen is 41 %. Determine the following (i) Diameter of the specimen, (1.5 Marks) ii) Initial length of the specimen,(1 Mark) ii) Stress under an elastic load of 13 kN, (1.5 Marks) iv) Young's Modulus if the elongation is 1.3 mm at 13 kN (1.5 Marks) and (v) Final diameter if the percentage of reduction in area is 29 %. (1.5 Marks) --- (Total Marks = 7) Young's Modulus of the Specimen (in N/mm²) Final Area of the Specimen at Fracture (in mm) Final Diameter of the Specimen after Fracture (in mm)arrow_forwardQUESTION 1 Select from the following statements, those which describe the process and conditions required for brittle fracture. (Note: Partial credit is not available for this question. Credit will only be awarded if all correct answers, and no incorrect answers, are selected). A. Occurs along defined crystallographic planes, thus leaving smooth fracture surfaces B. Occurs due to repeated loading and unloading below the yield strength of the material OC. Occurs in materials where the bonding strength is high relative to the yield strength D. The stress concentration at the crack tip exceeds the inter-atomic bonding energy ☐ E. Involves the nucleation, growth and coalescence of voids, thus resulting in rough fracture surfaces OF. Is a slow process whereby there is warning prior to failurearrow_forward
- Describe the appearance of a fatigue fracture?arrow_forwardMechanicalarrow_forwardQuestion 6 What is the calculated fracture toughness, K, for the perspex specimen in MPa root m? Give your answer to 2 decimal places. P = 250 N, crack length = 5.5 mm W= 13.3 mm, B = 5.45 mm Note that the span length (s) is 38mm. Take f(a/W) as 0.78arrow_forward
- What is the cause of the fracture of a brittle material?arrow_forwardA tensile test was carried out on a tensile sample with a gauge length of 62.35 mm and a cross-sectional area of 5.17mm. Determine the final fracture length and final cross-sectional area of the specimen if the percentage elongation was 17.64% and the percentage reduction in the area was 3.78%arrow_forwardPlease solve these two questions.. please do it fast a.How is a failure defined in fracture mechanics? How is it different from conventional failure theories? b) Explain the three pure modes of fracture. Describe the most common one, detailing the critical parameter and failure criteria.arrow_forward
- Do not answer in image format. Answer completely.arrow_forwardDetermine the percentage of elongation for a tensile specimen of the length of 40 mm and the final length at fracture 87 mm. Percentage of Elongation (%) =arrow_forward(a) A large medium carbon steel crane hook is thought to contain penny- shaped internal cracks. If the non-destructive test equipment used on the hook is not capable of detecting cracks smaller than 20 mm diameter, determine the fracture toughness required from this steel if the safety factor on stress is to be 2. The yield stress of the AISI 1045 grade steel is 1050 MNm². Note: For this crack geometry, the 'compliance function' Y in the Stress Intensity Factor (K) may be taken as 1. (b) A surface crack of 2.5 mm depth and a certain length is found in a thick rectangularcomponent. The component is schedule to be repaired in 6 months. The component is subjected to zero to maximum stress of 340 MPa, 50 times per hour. It was known that for this component catastrophic failure occurs when the crack size reaches 12 mm in depth. Assuming that the crack geometrical shape (aspect ratio) remains constant during crack growth, will the component fail before repair? For the crack geometry, the…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Understanding Failure Theories (Tresca, von Mises etc...); Author: The Efficient Engineer;https://www.youtube.com/watch?v=xkbQnBAOFEg;License: Standard youtube license