Manufacturing Engineering & Technology
7th Edition
ISBN: 9780133128741
Author: Serope Kalpakjian, Steven Schmid
Publisher: Prentice Hall
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 2, Problem 54QTP
Plot the ultimate strength vs. stiffness for the materials listed in Table 2.2, and prepare a three-dimensional plot for these materials where the third axis is their maximum elongation in 50 mm.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
2. Consider a cylindrical nickel wire 0.08 in. in diameter and 1200 in. long. Calculate its
elongation when a load of 300 N is applied. Assume that the deformation is totally
elastic.
Evaluate bulk modulus, if modulus of rigidity and Poisson’s ratio for a material are 75 GPa and 0.3 respectively.
A steel rod, 2 m long and 20 mm × 20 mm in
cross section, is subjected to a tensile force of
40 kN. What will be elongation of the rod when
the modulus of elasticity is 200 × 10³ N/mm²?
Chapter 2 Solutions
Manufacturing Engineering & Technology
Ch. 2 - Distinguish between engineering stress and true...Ch. 2 - In a stress-strain curve, what is the proportional...Ch. 2 - Describe the events that take place when a...Ch. 2 - What is ductility, and how is it measured?Ch. 2 - In the equation =Kn, which represents the true...Ch. 2 - What is strain-rate sensitivity, and how is it...Ch. 2 - What test can measure the properties of a material...Ch. 2 - What testing procedures can be used to measure the...Ch. 2 - Describe the differences between brittle and...Ch. 2 - What is hardness? Explain.
Ch. 2 - Describe the features of a Rockwell hardness test.Ch. 2 - What is a Leeb test? How is it different from a...Ch. 2 - Differentiate between stress relaxation and creep.Ch. 2 - Describe the difference between elastic and...Ch. 2 - Explain what uniform elongation means in tension...Ch. 2 - Describe the difference between deformation rate...Ch. 2 - Describe the difficulties involved in conducting a...Ch. 2 - What is Hookes law? Youngs modulus? Poissons...Ch. 2 - Describe the difference between transgranular and...Ch. 2 - What is the reason that yield strength is...Ch. 2 - Why does the fatigue strength of a specimen or...Ch. 2 - If striations are observed under microscopic...Ch. 2 - What is an Izod test? Why are Izod tests useful?Ch. 2 - Why does temperature increase during plastic...Ch. 2 - What is residual stress? How can residual stresses...Ch. 2 - On the same scale for stress, the tensile true...Ch. 2 - What are the similarities and differences between...Ch. 2 - Can a material have a negative Poissons ratio?...Ch. 2 - It has been stated that the higher the value of m,...Ch. 2 - Explain why materials with high m values, such as...Ch. 2 - With a simple sketch, explain whether it is...Ch. 2 - Explain why the difference between engineering...Ch. 2 - Consider an elastomer, such as a rubber band. This...Ch. 2 - If a material (such as aluminum) does not have an...Ch. 2 - What role, if any, does friction play in a...Ch. 2 - Which hardness tests and scales would you use for...Ch. 2 - Consider the circumstance where a Vickers hardness...Ch. 2 - Which of the two tests, tension or compression,...Ch. 2 - List and explain briefly the conditions that...Ch. 2 - List the factors that you would consider in...Ch. 2 - On the basis of Fig. 2.5, can you calculate the...Ch. 2 - If a metal tension-test specimen is rapidly pulled...Ch. 2 - Comment on your observations regarding the...Ch. 2 - Will the disk test be applicable to a ductile...Ch. 2 - What hardness test is suitable for determining the...Ch. 2 - Wire rope consists of many wires that bend and...Ch. 2 - A statistical sampling of Rockwell C hardness...Ch. 2 - In a Brinell hardness test, the resulting...Ch. 2 - Some coatings are extremely thinsome as thin as a...Ch. 2 - Select an appropriate hardness test for each of...Ch. 2 - A paper clip is made of wire 0.5 mm in diameter....Ch. 2 - A 250-mm-long strip of metal is stretched in two...Ch. 2 - Identify the two materials in Fig. 2.5 that have...Ch. 2 - Plot the ultimate strength vs. stiffness for the...Ch. 2 - If you remove the layer of material ad from the...Ch. 2 - Prove that the true strain at necking equals the...Ch. 2 - Percent elongation is always defined in terms of...Ch. 2 - You are given the K and n values of two different...Ch. 2 - A cable is made of two strands of different...Ch. 2 - On the basis of the information given in Fig. 2.5,...Ch. 2 - In a disk test performed on a specimen 1.00 in. in...Ch. 2 - A piece of steel has a hardness of 300 HB....Ch. 2 - A metal has the following properties: UTS = 70,000...Ch. 2 - Using only Fig. 2.5, calculate the maximum load in...Ch. 2 - Estimate the modulus of resilience for a highly...Ch. 2 - A metal has a strength coefficient K = 100,000 psi...Ch. 2 - Plot the true stresstrue strain curves for the...Ch. 2 - The design specification for a metal requires a...Ch. 2 - Calculate the major and minor pyramid angles for a...Ch. 2 - If a material has a target hardness of 300 HB,...Ch. 2 - A Rockwell A test was conducted on a material and...Ch. 2 - For a cold-drawn 0.5% carbon steel, will a...Ch. 2 - A material is tested in tension. Over a 1-in. gage...Ch. 2 - A horizontal rigid bar cc is subjecting specimen a...Ch. 2 - List and explain the desirable mechanical...Ch. 2 - When making a hamburger, you may have observed the...Ch. 2 - An inexpensive claylike material called Silly...Ch. 2 - In tension testing of specimens, mechanical and...Ch. 2 - Demonstrate the impact toughness of a piece of...Ch. 2 - Using a large rubber band and a set of weights,...Ch. 2 - Find or prepare some solid circular pieces of...Ch. 2 - Take several rubber bands and pull them at...Ch. 2 - Devise a simple fixture for conducting the bend...Ch. 2 - By pressing a small ball bearing against the top...Ch. 2 - Describe your observations regarding Fig. 2.14c.Ch. 2 - Embed a small steel ball in a soft block of...Ch. 2 - Devise a simple experiment, and perform tests on...Ch. 2 - Obtain some solid and some tubular metal pieces,...Ch. 2 - Explain how you would obtain an estimate of the...Ch. 2 - Without using the words stress or strain, define...Ch. 2 - We know that it is relatively easy to subject a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 5b.You used a material to design a system. The more you apply external force, the more the system becomes rigid. Use a sketch to explain how the material is disobeying the stress and strain characteristics. Give two(2) examples.arrow_forwardA cylindrical metal specimen 12.7 mm in diameter and 250 mm long is to be subjected to a tensile stress of 27.3 MPa (at this stress level the resulting deformation will be totally plastic). If the elongation is must be less than 0.068 mm, what is the minimum modulus of elasticity in GPa of the metal?arrow_forwardcylindrical bar of aluminum 20 mm in diameter is to be deformed elastically in tension. Aforce of 17,000 N. produces a reduction in specimen diameter of 3*10-3 mm if its elastic modulus is100 GPa. Draw the deformation situation and Compute Poisson’s ratio for this material if its elasticmodulus is 100 GPa?arrow_forward
- 1) Draw (using a normal graph paper) a conventional stress-strain diagram for ANY metallic material (e.g. steel, aluminium, copper, brass, iron, tungsten). The diagram should be as accurate as possible using a suitable scale (e.g. 1cm: 10 N). 2) Calculate the Modulus of Elasticity, Modulus of Toughness and Modulus of Resilience for the material from the stress-strain diagram. Show your calculations in detail on a separate A4 piece of paper.arrow_forwardA 3-mm-long gold alloy wire intended to electricallybond a computer chip to its package has an initial diameter of30 μm. During testing, it is pulled axially with a load of 15grams-force. If the wire diameter decreases uniformly to29 μm, compute the following:a. The final length of the wire.b. The true stress and true strain at this load.c. The engineering stress and strain at this load.arrow_forward2. Consider a cylindrical nickel wire 0.08 in. in diameter and 1200 in. long. Calculate its elongation when a load of 300 N is applied. Assume that the deformation is totally elastic. 3. A cylindrical specimen of a metal alloy 10 mm in diameter is stressed elastically in tension. A force of 3370 Ibr produces a reduction in specimen diameter of 7 x 10* mm. Compute Poisson's ratio for this material if its elastic modulus is 100 GPa. 4. A cylindrical specimen of a hypothetical metal alloy is stressed in compression. If its original and final diameters are 20.000 and 20.025 mm, respectively, and its final length is 74.96 mm, compute its original length if the deformation is totally elastic. The elastic and shear moduli for this alloy are 105 GPa and 39.7 GPa, respectively.arrow_forward
- 3. A 30-cm long, 12-mm diameter carbon steel rod was subjected to 15,5 kN of tension. Calculate (a) the stress and strain in the rod, (b) the amount that it stretches, (c) its change in diameter, and (d) its stiffness (k=EA/L). (e) If the force was only 4.5 kN, by what amount would the rod have stretched?arrow_forwardPoisson's ratio for a material is 0.3. The material is stretched axially, and its transverse strain is -0.00010. Calculate its axial strain in units of microstrain.arrow_forward2. A specimen of Mg have a rectangular cross-section of dimensions 3.2mm by 19.1mm is deformed by tension. Using the load-elongation data tabulated below, do the following: Plot the data as engineering stress (in MPa) VS. engineering strain. Determine the elastic modulus Determine the yield strength (using a 0.2% offset method) Determine the tensile strength of the material Compute the modulus of resilience Compute the ductility Load (N) Length(mm) 63.50 1380 63.53 2780 63.56 5630 63.62 7430 63.70 8140 63.75 9870 64.14 12,850 14,100 14,340 13,830 12,500 fracture 65.41 66.68 67.95 69.22 70.49arrow_forward
- Calculate the elastic strain in a polycrystalline aluminum alloy when it is pulled in tension given that the Young’s modulus of the alloy is 80 GPa while the yield strength is 400 MPa.arrow_forwardA cylindrical material that has a Young’s Modulus of 2.5 GPa that is loaded along its longitudinal axis and increases from to .650 mm to .696 mm in the direction of the load. The diameter of the material decreases .05 mm from its 3 c diameter. Assume the material is isotropic. What is the tangential/shear stress during this loading period (in kPa)arrow_forwardExample 2. A cylindrical bar of 40 mm diameter and 1 m length is subjected to a tensile test. Its longitudinal strain is 6 times that of its lateral strain. If the modulus of elasticity is 2 x 105 N/mm², then its modulus of rigidity will be 2arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Material Properties 101; Author: Real Engineering;https://www.youtube.com/watch?v=BHZALtqAjeM;License: Standard YouTube License, CC-BY