Manufacturing Engineering & Technology
7th Edition
ISBN: 9780133128741
Author: Serope Kalpakjian, Steven Schmid
Publisher: Prentice Hall
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 2, Problem 67QTP
A metal has a strength coefficient K = 100,000 psi and n = 0.25. Assuming that a tensile-test specimen made from this metal begins to neck at a true strain of 0.25, show that the ultimate tensile strength is 59,340 psi.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
True stress-strain
Engineering stress-strain
strain
Calculate the engineering ultimate tensile
strength of a material whose strength
coefficient is 535 MPa and of a tensile-test
specimen that necks at a true strain of 0.55.
200 MPa
O 267 MPa
O 244 MPa
O 222 MPa
stress
The data below are for a thin steel wire suitable for use as a guitar string.
Ultimate tensile stress: 1.8 x 109 Pa
Young Modulus: 2.2 x 1011 Pa
Cross-sectional area: 2.0 x 10-7 m2
In a tensile test, a specimen of the wire, of original length 1.5 m, is stretched until it breaks. Assuming the wire obeys Hooke’s law throughout, calculate the extension of the specimen immediately before breaking.
A ductile specimen that has an initial length of 10 cm is tested under uniaxial loading. If the test is under tension and the nominal strain is 21.9%, please calculate the true strain in %.
Chapter 2 Solutions
Manufacturing Engineering & Technology
Ch. 2 - Distinguish between engineering stress and true...Ch. 2 - In a stress-strain curve, what is the proportional...Ch. 2 - Describe the events that take place when a...Ch. 2 - What is ductility, and how is it measured?Ch. 2 - In the equation =Kn, which represents the true...Ch. 2 - What is strain-rate sensitivity, and how is it...Ch. 2 - What test can measure the properties of a material...Ch. 2 - What testing procedures can be used to measure the...Ch. 2 - Describe the differences between brittle and...Ch. 2 - What is hardness? Explain.
Ch. 2 - Describe the features of a Rockwell hardness test.Ch. 2 - What is a Leeb test? How is it different from a...Ch. 2 - Differentiate between stress relaxation and creep.Ch. 2 - Describe the difference between elastic and...Ch. 2 - Explain what uniform elongation means in tension...Ch. 2 - Describe the difference between deformation rate...Ch. 2 - Describe the difficulties involved in conducting a...Ch. 2 - What is Hookes law? Youngs modulus? Poissons...Ch. 2 - Describe the difference between transgranular and...Ch. 2 - What is the reason that yield strength is...Ch. 2 - Why does the fatigue strength of a specimen or...Ch. 2 - If striations are observed under microscopic...Ch. 2 - What is an Izod test? Why are Izod tests useful?Ch. 2 - Why does temperature increase during plastic...Ch. 2 - What is residual stress? How can residual stresses...Ch. 2 - On the same scale for stress, the tensile true...Ch. 2 - What are the similarities and differences between...Ch. 2 - Can a material have a negative Poissons ratio?...Ch. 2 - It has been stated that the higher the value of m,...Ch. 2 - Explain why materials with high m values, such as...Ch. 2 - With a simple sketch, explain whether it is...Ch. 2 - Explain why the difference between engineering...Ch. 2 - Consider an elastomer, such as a rubber band. This...Ch. 2 - If a material (such as aluminum) does not have an...Ch. 2 - What role, if any, does friction play in a...Ch. 2 - Which hardness tests and scales would you use for...Ch. 2 - Consider the circumstance where a Vickers hardness...Ch. 2 - Which of the two tests, tension or compression,...Ch. 2 - List and explain briefly the conditions that...Ch. 2 - List the factors that you would consider in...Ch. 2 - On the basis of Fig. 2.5, can you calculate the...Ch. 2 - If a metal tension-test specimen is rapidly pulled...Ch. 2 - Comment on your observations regarding the...Ch. 2 - Will the disk test be applicable to a ductile...Ch. 2 - What hardness test is suitable for determining the...Ch. 2 - Wire rope consists of many wires that bend and...Ch. 2 - A statistical sampling of Rockwell C hardness...Ch. 2 - In a Brinell hardness test, the resulting...Ch. 2 - Some coatings are extremely thinsome as thin as a...Ch. 2 - Select an appropriate hardness test for each of...Ch. 2 - A paper clip is made of wire 0.5 mm in diameter....Ch. 2 - A 250-mm-long strip of metal is stretched in two...Ch. 2 - Identify the two materials in Fig. 2.5 that have...Ch. 2 - Plot the ultimate strength vs. stiffness for the...Ch. 2 - If you remove the layer of material ad from the...Ch. 2 - Prove that the true strain at necking equals the...Ch. 2 - Percent elongation is always defined in terms of...Ch. 2 - You are given the K and n values of two different...Ch. 2 - A cable is made of two strands of different...Ch. 2 - On the basis of the information given in Fig. 2.5,...Ch. 2 - In a disk test performed on a specimen 1.00 in. in...Ch. 2 - A piece of steel has a hardness of 300 HB....Ch. 2 - A metal has the following properties: UTS = 70,000...Ch. 2 - Using only Fig. 2.5, calculate the maximum load in...Ch. 2 - Estimate the modulus of resilience for a highly...Ch. 2 - A metal has a strength coefficient K = 100,000 psi...Ch. 2 - Plot the true stresstrue strain curves for the...Ch. 2 - The design specification for a metal requires a...Ch. 2 - Calculate the major and minor pyramid angles for a...Ch. 2 - If a material has a target hardness of 300 HB,...Ch. 2 - A Rockwell A test was conducted on a material and...Ch. 2 - For a cold-drawn 0.5% carbon steel, will a...Ch. 2 - A material is tested in tension. Over a 1-in. gage...Ch. 2 - A horizontal rigid bar cc is subjecting specimen a...Ch. 2 - List and explain the desirable mechanical...Ch. 2 - When making a hamburger, you may have observed the...Ch. 2 - An inexpensive claylike material called Silly...Ch. 2 - In tension testing of specimens, mechanical and...Ch. 2 - Demonstrate the impact toughness of a piece of...Ch. 2 - Using a large rubber band and a set of weights,...Ch. 2 - Find or prepare some solid circular pieces of...Ch. 2 - Take several rubber bands and pull them at...Ch. 2 - Devise a simple fixture for conducting the bend...Ch. 2 - By pressing a small ball bearing against the top...Ch. 2 - Describe your observations regarding Fig. 2.14c.Ch. 2 - Embed a small steel ball in a soft block of...Ch. 2 - Devise a simple experiment, and perform tests on...Ch. 2 - Obtain some solid and some tubular metal pieces,...Ch. 2 - Explain how you would obtain an estimate of the...Ch. 2 - Without using the words stress or strain, define...Ch. 2 - We know that it is relatively easy to subject a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- For a given material, the ratio of lateral strain to linear strain is observed as 0.2 when axially loaded. What will be Poisson’s ratio of that material? Take diameter of the specimen is 50mm and Length=1m. a. 0.1 b. 0.2 c. 0.15 d. 5arrow_forwardThe strength coefficient and strain-hardening exponent of a certain test metal are 750 MPa and 0.25, respectively. A cylindrical specimen of the metal with starting diameter = 75 mm is stretched. If the average flow stress on the part is 450 MPa determine the final diameter of the specimen.arrow_forwardA torsion test shows that the shear modulus of an aluminum specimen is 27.6 GPa. When the same specimen is used in a tensile test, the modulus of elasticity is found to be 73.2 GPa. Find the Poisson’s ratio for the specimen.arrow_forward
- tensile test is performed to determine the parameters strength constant C and strainrate sensitivity exponent m for a certain metal. The temperature at which the test is performed = 500°C. At a strain rate = 10/s, the stress is measured at 140 MPa; and at a strain rate = 150/s, the stress = 280 MPa. (a) Determine C and m. (b) If the temperature were 600°C, what changes would you expect in the values of C and m?arrow_forwardA steel specimen 12mm diameter has gauge length 50mm. the steel specimen had tested via tensile test under maximum load 66KN with elongation 7.5mm, and the yield load of this specimen is 15KN with elongation 2.4mm. Calculate: 1- The engineering ultimate stress (ultimate tensile strength), and engineering strain at this point. 2- The engineering stress and strain at yield point. 3- The modulus of elasticity, and the modulus of resilience. 4- The final or fracture strain of a steel specimen, if you know that the final length of specimen after testing is 58.5mm. 5- The true stress and strain for ultimate point.arrow_forwardA steel specimen 12mm diameter has gauge length 50mm. the steel specimen had tested via tensile test under maximum load 66KN with elongation 7.5mm, and the yield load of this specimen is 15KN with elongation 2.4mm. Calculate: 1- The engineering ultimate stress (ultimate tensile strength), and engineering strain at this point. 2- The engineering stress and strain at yield point. 3- The modulus of elasticity, and the modulus of resilience. 4- The final or fracture strain of a steel specimen, if you know that the final length of specimen after testing is 58.5mm. 5- The true stress and strain for ultimate point. any four point sirarrow_forward
- Draw a typical stress vs strain tensile test curve for the following materials (two seperate graphs) and label the axis. A ductile metallic test specimen that is stretched to failure displaying a characteristic yield point and show the following parts on the curve. 1- Yield point 2- Ultimate Tensile Strength 3- Breaking point 4- Elastic Region 5- Plastic Region 6- Necking regionarrow_forwardFrom the tensile stress-strain behavior for the brass specimen shown in Figure 6.12, determine the following: (a) The modulus of elasticity (b) The yield strength at a strain offset of 0.002 (c) The maximum load that can be sustained by a cylindrical specimen hav- ing an original diameter of 12.8 mm (0.505 in.) (d) The change in length of a specimen originally 250 mm (10 in.) long that is subjected to a tensile stress of 345 MPa (50,000 psi)arrow_forwardThe strength coefficient and strain-hardening exponent of a certain test metal are 500MPa and 0.25 respectively. A cylindrical specimen of the metal with starting diameter = 58 mm is stretched. If the average flow stress on the part is 375 MPa determine the final diameter of the specimen.arrow_forward
- An 820 MPa (145,000 psi) stress is applied to a specimen of 4341 steel alloy, which has a plane strain fracture toughness of 45MPa squareroot (m). If the greatest surface crack is 0.95 mm (0.03 in) long, will this specimen fracture as a result? Assume that the parameter Y is 1.22.arrow_forwardAn engine part is being tested with a load of 65 000 lb. The allowable tensile stress is 10000 psi ,modulus of elasticity 40×106 psi . If the original length of specimen is 40 inches with elongation not exceeding 0.0155 inches, what diameter of the specimen is rejected.arrow_forwardi need the answer quicklyarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Material Properties 101; Author: Real Engineering;https://www.youtube.com/watch?v=BHZALtqAjeM;License: Standard YouTube License, CC-BY