Manufacturing Engineering & Technology
7th Edition
ISBN: 9780133128741
Author: Serope Kalpakjian, Steven Schmid
Publisher: Prentice Hall
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 2, Problem 28QLP
Can a material have a negative Poisson’s ratio? Give a rationale for your answer.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The lower yield point for a certain plain carbon steelbar is found to be 135 MPa, while a second bar of the samecomposition yields at 260 MPa. Metallographic analysisshows that the average grain diameter is 50μm in the firstbar and 8μm in the second bar.a. Predict the grain diameter needed to cause a loweryield point of 205 MPa.b. If the steel could be fabricated to form a stablegrain structure of 500 nm grains, what strengthwould be predicted?c. Why might you expect the upper yield point to bemore alike in the first two bars than the lower yieldpoint?
The lower yield point for a certain plain carbon steel bar is found to be 135 MPa, while a second bar of the same composition yields at 260 MPa. Metallographic analysis shows that the average grain diameter is 50 µm in the first bar and 8 µm in the second bar. Predict the grain diameter needed to cause a lower yield point of 205 MPa.
Question 1
You are working on a design team at a small orthopaedic firm. You have been asked to select a cobalt-
chrome-molybdenum (CoCr) material that will not experience plastic deformation under a specific mechanical test, as follows...
A tensile stress is applied along the long axis of a solid cylindrical rod that has a diameter of 10 mm. An applied load of some
magnitude F produces a 7x10³ mm change in diameter (see figure below, original shape is blue, elongated shape is unshaded).
Q1F: How would the "new alloy" material (with different properties as shown below) behave, assuming it has the same initial
diameter (10mm) and applied load (F) in the tensile test? That is, would it experience plastic deformation (yield) under the
conditions of this problem?
Chapter 2 Solutions
Manufacturing Engineering & Technology
Ch. 2 - Distinguish between engineering stress and true...Ch. 2 - In a stress-strain curve, what is the proportional...Ch. 2 - Describe the events that take place when a...Ch. 2 - What is ductility, and how is it measured?Ch. 2 - In the equation =Kn, which represents the true...Ch. 2 - What is strain-rate sensitivity, and how is it...Ch. 2 - What test can measure the properties of a material...Ch. 2 - What testing procedures can be used to measure the...Ch. 2 - Describe the differences between brittle and...Ch. 2 - What is hardness? Explain.
Ch. 2 - Describe the features of a Rockwell hardness test.Ch. 2 - What is a Leeb test? How is it different from a...Ch. 2 - Differentiate between stress relaxation and creep.Ch. 2 - Describe the difference between elastic and...Ch. 2 - Explain what uniform elongation means in tension...Ch. 2 - Describe the difference between deformation rate...Ch. 2 - Describe the difficulties involved in conducting a...Ch. 2 - What is Hookes law? Youngs modulus? Poissons...Ch. 2 - Describe the difference between transgranular and...Ch. 2 - What is the reason that yield strength is...Ch. 2 - Why does the fatigue strength of a specimen or...Ch. 2 - If striations are observed under microscopic...Ch. 2 - What is an Izod test? Why are Izod tests useful?Ch. 2 - Why does temperature increase during plastic...Ch. 2 - What is residual stress? How can residual stresses...Ch. 2 - On the same scale for stress, the tensile true...Ch. 2 - What are the similarities and differences between...Ch. 2 - Can a material have a negative Poissons ratio?...Ch. 2 - It has been stated that the higher the value of m,...Ch. 2 - Explain why materials with high m values, such as...Ch. 2 - With a simple sketch, explain whether it is...Ch. 2 - Explain why the difference between engineering...Ch. 2 - Consider an elastomer, such as a rubber band. This...Ch. 2 - If a material (such as aluminum) does not have an...Ch. 2 - What role, if any, does friction play in a...Ch. 2 - Which hardness tests and scales would you use for...Ch. 2 - Consider the circumstance where a Vickers hardness...Ch. 2 - Which of the two tests, tension or compression,...Ch. 2 - List and explain briefly the conditions that...Ch. 2 - List the factors that you would consider in...Ch. 2 - On the basis of Fig. 2.5, can you calculate the...Ch. 2 - If a metal tension-test specimen is rapidly pulled...Ch. 2 - Comment on your observations regarding the...Ch. 2 - Will the disk test be applicable to a ductile...Ch. 2 - What hardness test is suitable for determining the...Ch. 2 - Wire rope consists of many wires that bend and...Ch. 2 - A statistical sampling of Rockwell C hardness...Ch. 2 - In a Brinell hardness test, the resulting...Ch. 2 - Some coatings are extremely thinsome as thin as a...Ch. 2 - Select an appropriate hardness test for each of...Ch. 2 - A paper clip is made of wire 0.5 mm in diameter....Ch. 2 - A 250-mm-long strip of metal is stretched in two...Ch. 2 - Identify the two materials in Fig. 2.5 that have...Ch. 2 - Plot the ultimate strength vs. stiffness for the...Ch. 2 - If you remove the layer of material ad from the...Ch. 2 - Prove that the true strain at necking equals the...Ch. 2 - Percent elongation is always defined in terms of...Ch. 2 - You are given the K and n values of two different...Ch. 2 - A cable is made of two strands of different...Ch. 2 - On the basis of the information given in Fig. 2.5,...Ch. 2 - In a disk test performed on a specimen 1.00 in. in...Ch. 2 - A piece of steel has a hardness of 300 HB....Ch. 2 - A metal has the following properties: UTS = 70,000...Ch. 2 - Using only Fig. 2.5, calculate the maximum load in...Ch. 2 - Estimate the modulus of resilience for a highly...Ch. 2 - A metal has a strength coefficient K = 100,000 psi...Ch. 2 - Plot the true stresstrue strain curves for the...Ch. 2 - The design specification for a metal requires a...Ch. 2 - Calculate the major and minor pyramid angles for a...Ch. 2 - If a material has a target hardness of 300 HB,...Ch. 2 - A Rockwell A test was conducted on a material and...Ch. 2 - For a cold-drawn 0.5% carbon steel, will a...Ch. 2 - A material is tested in tension. Over a 1-in. gage...Ch. 2 - A horizontal rigid bar cc is subjecting specimen a...Ch. 2 - List and explain the desirable mechanical...Ch. 2 - When making a hamburger, you may have observed the...Ch. 2 - An inexpensive claylike material called Silly...Ch. 2 - In tension testing of specimens, mechanical and...Ch. 2 - Demonstrate the impact toughness of a piece of...Ch. 2 - Using a large rubber band and a set of weights,...Ch. 2 - Find or prepare some solid circular pieces of...Ch. 2 - Take several rubber bands and pull them at...Ch. 2 - Devise a simple fixture for conducting the bend...Ch. 2 - By pressing a small ball bearing against the top...Ch. 2 - Describe your observations regarding Fig. 2.14c.Ch. 2 - Embed a small steel ball in a soft block of...Ch. 2 - Devise a simple experiment, and perform tests on...Ch. 2 - Obtain some solid and some tubular metal pieces,...Ch. 2 - Explain how you would obtain an estimate of the...Ch. 2 - Without using the words stress or strain, define...Ch. 2 - We know that it is relatively easy to subject a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Q3 contd. (d) The yield strength values of pure aluminium (Al) and pure copper (Cu) are 25 MPa and 20 MPa, respectively; whereas the yield strength values of cold rolled Al-Mn-Mg alloy and cast 60-40 Brass (60% Cu, 40% Zn) are 200 MPa and 105 MPa, respectively. With aid of schematics, explain the main mechanisms account for the increases in the strengths. (e) A cylindrical tie rod with a diameter of 18.4 mm is subjected to cyclic loading. The stress range is +/- 200 kN. Figure Q3.3 shows the S-N curve of the material of which the rod is made, how many cycles will this rod survive? Stress amplitude O₂ (MPa) 1500 1400 1300 1200 1100 1000 900 800 700 600 500 400 10² 10³ 104 4340 low-alloy steel Stress ratio = -1 Fig. Q3.3 105 106 Number of cycles to failure, Nf 107 108arrow_forwardQuestion 1 You are working on a design team at a small orthopaedic firm. You have been asked to select a cobalt- chrome-molybdenum (CoCr) material that will not experience plastic deformation under a specific mechanical test, as follows... A tensile stress is applied along the long axis of a solid cylindrical rod that has a diameter of 10 mm. An applied load of some magnitude F produces a 7x10-³ mm change in diameter (see figure below, original shape is blue, elongated shape is unshaded). Q1A-B: Calculate the transverse strain in the x-direction (Ex) associated with the reduction in diameter. Calculate the axial strain in the z-direction (₂) associated with the length increase.arrow_forwardIf you have a material that is initially hard and strong, would you expect it to cyclically harden or soften? What would be a way of characterizing how strong it must be initially to make your answer a bit more quantitative?arrow_forward
- Which material has the larger work hardening exponent?arrow_forwardThe minimum yield strength for iron with an average grain size of 6x10^-2 mm is 135 MPa, this increases to 260 MPa when the average grain size is reduced to 8x10^-3 mm.What must the average grain size be to achieve a yield strength of 205 MPa.arrow_forwardWhich materials, behave in the opposite way? Give some examples?arrow_forward
- A batch of casted mild steel has a modulus of elasticity of 200 GPa and a yield strength of 250MPa. Calculate for its modulus of resilience. After cold working the steel, the yield strength increases to 310 MPa. Calculate for the percent reduction in the average grain diameter given σo =70 MPa and k = 0.74.arrow_forwardI need the answer quicklyarrow_forwardWhat is G-P zone? Draw yield stress vs. aging time, use a simple sketch andexplain the mechanism. Why does yield stress change by aging time ?arrow_forward
- The critical resolved shear stress for copper is 0.48 MPa. Determine the maximum possible yield strength for a single crystal of Cu pulled in tension.arrow_forwardA non-cold-worked cylindrical rod with an initial length of 800 mm and diameter of 15 mm is to be deformed using a tensile load of 45 kN. Of the materials listed below, which are possible candidates if you assume that failure of the system occurs when the rod plastically deforms? Do the possible candidates change if you change your assumption to the system failing at the onset of necking in the rod? Justify your choice(s). Material Young’s Modulus (GPa) Yield Strength (MPa) 1040 Steel UTS (MPa) Elongation (%) 680 205 440 25 Brass 100 185 310 68 Сopper 125 160 220 44arrow_forwardPLEASE URGENT ANSWER.......arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
An Introduction to Stress and Strain; Author: The Efficient Engineer;https://www.youtube.com/watch?v=aQf6Q8t1FQE;License: Standard YouTube License, CC-BY