Concept explainers
(a)
Interpretation:
Lewis structure of periodate ion
Concept Introduction:
Lewis structure represents covalent bonds and describes valence electrons configuration of atoms. The covalent bonds are depicted by lines and unshared electron pairs by pairs of dots. The sequence to write Lewis structure of some molecule is given as follows:
- The central atom is identified and various other atoms are arranged around it. This central atom so chosen is often the least electronegative.
- Total valence electrons are estimated for each atom.
- A single bond is first placed between each atom pair.
- The electrons left can be allocated as unshared electron pairs or as multiple bonds around
symbol of element to satisfy the octet (or duplet) for each atom. - Add charge on overall structure in case of polyatomic cation or anion.
(a)
Explanation of Solution
The molecule
The symbol for oxygen is
The symbol for iodine is
One negative charge on molecule is added up as one valence electron in total count.
Thus total valence electrons are sum of the valence electrons for each atom in
The skeleton structure in
To complete the valence electrons of iodine, it forms double bond with three oxygen atoms.
Hence, the Lewis structure for
To complete the octet of iodine atom the negative charge is delocalized on each oxygen atom and since there are four oxygen atoms, therefore, four resonance structures will be formed and possible resonance structures are as follows:
(b)
Interpretation:
Lewis structure of hydrogen phosphate ion
Concept Introduction:
Refer to part (a).
(b)
Explanation of Solution
Hydrogen phosphate ion
The symbol for oxygen is
The symbol for hydrogen is
The symbol for phosphorus is
Two negative charges on molecule are added up as one valence electron in total count.
Thus total valence electrons are sum of the valence electrons for each atom in
The skeleton structure in
To complete the valence electrons of phosphorous, it forms double bond with one oxygen atom.
Hence, 20 electrons are allocated as 10 lone pairs on remaining oxygen atoms to complete their octet. The Lewis structure is as follows:
The negative charge is delocalized on three oxygen atoms and therefore three resonance structures will be formed and possible resonance structures are as follows:
(c)
Interpretation:
Lewis structure of chloric acid
Concept Introduction:
Refer to part (a).
(c)
Explanation of Solution
Chloric acid
The symbol for oxygen is
The symbol for hydrogen is
The symbol for chlorine is
Thus total valence electrons are sum of the valence electrons for each atom in
The skeleton structure in
To complete the valence electrons of chlorine, it forms double bond with two oxygen atoms.
Hence, 14 electrons are allocated as 6 lone pairs on remaining oxygen atoms and 1 lone pair on chlorine to complete their respective octet. The Lewis structure is as follows:
The lone pair on oxygen atom that is attached to chlorine participates in resonance with that and produces
(d)
Interpretation:
Lewis structure of arsenate ion
Concept Introduction:
Refer to part (a).
(d)
Explanation of Solution
Arsenate ion
The symbol for oxygen is
The symbol for arsenic is
The symbol for chlorine is
Three negative charges on molecule is added up as three valence electrons in total count. Thus total valence electrons are sum of the valence electrons for each atom in arsenate ion
The skeleton structure in arsenate ion
To complete the valence electrons of arsenic, it forms double bond with one oxygen atom.
Hence, 22 electrons are allocated as 11 lone pairs on remaining oxygen atoms to complete their octet. The Lewis structure is as follows:
The negative charge is delocalized on each oxygen atom and since there are four oxygen atoms, therefore, four resonance structures will be formed and possible resonance structures are as,
Want to see more full solutions like this?
Chapter 2 Solutions
Chemical Principles: The Quest for Insight
- Valine is an amino acid with this Lewis structure: Write the Lewis structure for the zwitterion form of valine.arrow_forwardSome chemists believe that satisfaction of the octet rule should be the top criterion for choosing the dominant Lewis structure of a molecule or ion. Other chemists believe that achieving the best formal charges should be the top criterion. Consider the dihydrogen phosphate ion, HaPO, , in which the H atoms are bonded to O atoms. (a) What is the predicted dominant Lewis structure if satisfying the octet rule is the top eriterion? (b) What is the predicted dominant Lewis structure if achieving the best formal charges is the top criterion?arrow_forwardAcetylene 1C2H22 and nitrogen 1N22 both contain a triplebond, but they differ greatly in their chemical properties.(a) Write the Lewis structures for the two substances. (b) Byreferring to Appendix C, look up the enthalpies of formationof acetylene and nitrogen. Which compound is more stable?(c) Write balanced chemical equations for the completeoxidation of N2 to form N2O51g2 and of acetylene to formCO21g2 and H2O1g2. (d) Calculate the enthalpy of oxidationper mole for N2 and for C2H2 (the enthalpy of formationof N2O51g2 is 11.30 kJ>mol). (e) Both N2 and C2H2 possesstriple bonds with quite high bond enthalpies (Table 8.3).Calculate the enthalpy of hydrogenation per mole for bothcompounds: acetylene plus H2 to make methane, CH4;nitrogen plus H2 to make ammonia, NH3.arrow_forward
- By referring only to the periodic table, select (a) the most electronegativeelement in group 6A; (b) the least electronegativeelement in the group Al, Si, P; (c) the most electronegative elementin the group Ga, P, Cl, Na; (d) the element in the group K,C, Zn, F that is most likely to form an ionic compound with Ba.arrow_forward(a) Compare the bond enthalpies (Table 8.3) of the carbon–carbon single, double, and triple bonds to deduce an averageπ -bond contribution to the enthalpy. What fraction ofa single bond does this quantity represent? (b) Make a similarcomparison of nitrogen–nitrogen bonds. What do youobserve? (c) Write Lewis structures of N2H4, N2H2, and N2,and determine the hybridization around nitrogen in eachcase. (d) Propose a reason for the large difference in yourobservations of parts (a) and (b).arrow_forwardThe hypochlorite ion, ClO-, is the active ingredient inbleach. The perchlorate ion, ClO4-, is a main componentof rocket propellants. Draw Lewis structures for both ions. (a) What is the formal charge of Cl in the hypochlorite ion?(b) What is the formal charge of Cl in the perchlorate ion, assumingthe Cl—O bonds are all single bonds? (c) What is theoxidation number of Cl in the hypochlorite ion? (d) Whatis the oxidation number of Cl in the perchlorate ion, assumingthe Cl—O bonds are all single bonds? (e) In a redox reaction,which ion would you expect to be more easily reduced?arrow_forward
- Write Lewis structures for the following molecules and ions: (d) CH3COO−, (e) CN−, (f) CH3CH2NH3+.arrow_forwardHello, I want the answer in clear handwriting, please. In which of the following molecules is it necessary to invoke charge-separated resonance structures in order that the central atom obeys the octet rule: (a) H2S; (b) HCN; (c) SO2; (d) AsF5; (e) [BF4]¯; (f) CO2; (g) BRF3.arrow_forwardWhich of these statements about resonance is true?(a) When you draw resonance structures, it is permissibleto alter the way atoms are connected.(b) The nitrate ion has one long N¬O bond and two shortN¬O bonds.(c) “Resonance” refers to the idea that molecules areresonating rapidly between different bonding patterns.(d) The cyanide ion has only one dominant resonancestructure.(e) All of the above are true.arrow_forward
- In addition to ammonia, nitrogen forms three other hy-drides: hydrazine (N₂H₄), diazene (N₂H₂), and tetrazene (N₄H₄).(a) Use Lewis structures to compare the strength, length, and or-der of nitrogen-nitrogen bonds in hydrazine, diazene, and N₂.(b) Tetrazene (atom sequence H₂NNNNH₂) decomposes above 0°C to hydrazine and nitrogen gas. Draw a Lewis structure fortetrazene, and calculate ΔH°ᵣₓₙ for this decomposition.arrow_forwardDraw the Lewis structures for each of the following ionsor molecules. Identify those in which the octet rule is notobeyed; state which atom in each compound does not followthe octet rule; and state, for those atoms, how manyelectrons surround these atoms: (a) PH3, (b) AlH3, (c) N3-,(d) CH2Cl2, (e) SnF62-.arrow_forwardDraw the Lewis structure with lowest formal charges, and determine the charge of each atom in (a) OCS; (b) NO. (C)CN−; (d) ClO−.arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning