Organic Chemistry
Organic Chemistry
8th Edition
ISBN: 9781305580350
Author: William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. Foote
Publisher: Cengage Learning
Question
Book Icon
Chapter 19, Problem 19.18P

(a)

Interpretation Introduction

Interpretation:

The product of the aldol reaction of the given compound and the α,β-unsaturated aldehyde or ketone formed from dehydration of the aldol product has to be drawn.

Concept introduction:

Aldol reaction is an addition reaction of aldehydes and ketones. Aldol reaction is a reversible reaction and occurs in the presence of a strong base like sodium hydroxide. One molecule (aldehyde or ketone) acts a nucleophile and attacks the electrophilic carbon center of the other molecule to give the addition product. The product is named β-hydroxy aldehyde if two aldehydes combine and β-hydroxy ketone if two ketones combine.

(a)

Expert Solution
Check Mark

Explanation of Solution

The aldol reaction product for the given compound has to be drawn.

The aldol reaction yield a β-hydroxy aldehyde as the product and on dehydration, water is eliminated and the product is formed.

Base abstracts a proton from the α carbon atom of aldehyde. Enolate anion is formed after abstraction of α proton from aldehyde molecule. Enolate ion attacks on the carbonyl carbon of the other molecule of aldehyde. The species formed in this step abstracts proton from water to give the β-hydroxy aldehyde. Loss of water molecule from the aldol product produces the product given below.

Organic Chemistry, Chapter 19, Problem 19.18P , additional homework tip  1

(b)

Interpretation Introduction

Interpretation:

The product of the aldol reaction of the given compound and the α,β-unsaturated aldehyde or ketone formed from dehydration of the aldol product has to be drawn.

Concept introduction:

Aldol reaction is an addition reaction of aldehydes and ketones. Aldol reaction is a reversible reaction and occurs in the presence of a strong base like sodium hydroxide. One molecule (aldehyde or ketone) acts a nucleophile and attacks the electrophilic carbon center of the other molecule to give the addition product. The product is named β-hydroxy aldehyde if two aldehydes combine and β-hydroxy ketone if two ketones combine.

(b)

Expert Solution
Check Mark

Explanation of Solution

The aldol reaction product for the given compound has to be drawn.

The aldol reaction yield a β-hydroxy ketone as the product and on dehydration, water is eliminated and the product is formed.

Base abstracts a proton from the α carbon atom of ketone. Enolate anion is formed after abstraction of α proton from ketone molecule. Enolate ion attacks on the carbonyl carbon of the other molecule of ketone. The species formed in this step abstracts proton from water to give the β-hydroxy ketone. Loss of water molecule from the aldol product produces the product given below.

Organic Chemistry, Chapter 19, Problem 19.18P , additional homework tip  2

(c)

Interpretation Introduction

Interpretation:

The product of the aldol reaction of the given compound and the α,β-unsaturated aldehyde or ketone formed from dehydration of the aldol product has to be drawn.

Concept introduction:

Aldol reaction is an addition reaction of aldehydes and ketones. Aldol reaction is a reversible reaction and occurs in the presence of a strong base like sodium hydroxide. One molecule (aldehyde or ketone) acts a nucleophile and attacks the electrophilic carbon center of the other molecule to give the addition product. The product is named β-hydroxy aldehyde if two aldehydes combine and β-hydroxy ketone if two ketones combine.

(c)

Expert Solution
Check Mark

Explanation of Solution

The aldol reaction product for the given compound has to be drawn.

The aldol reaction yield a β-hydroxy ketone as the product and on dehydration, water is eliminated and the product is formed.

Base abstracts a proton from the α carbon atom of the ketone. Enolate anion is formed after abstraction of α proton from ketone molecule. Enolate ion attacks on the carbonyl carbon of the same molecule. The species formed in above step abstracts proton from water to give the β-hydroxy ketone. Loss of water molecule from the aldol product produces the product given below.

Organic Chemistry, Chapter 19, Problem 19.18P , additional homework tip  3

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Complete the following table. The only density needed is already given. Show your calculations in a neat and easy-to-follow manner in the space below the table. All units should be included and significant figures should be given close attention. Be sure to notice that the amount of material should be in millimoles rather than moles, and the theoretical mass of the product should in milligrams rather than grams. LOCH 3 + H2SO4 HNO 3 O=C-OCH 3 NO2 x H₂O F.W. 4.0 mL 1.3 M amount 0.50 mL in H2SO4 mg Theoretical Theoretical mmoles density 1.09
Kumada Coupling: 1. m-Diisobutylbenzene below could hypothetically be synthesized by Friedel-Crafts reaction. Write out the reaction with a mechanism and give two reasons why you would NOT get the desired product. Draw the reaction (NOT a mechanism) for a Kumada coupling to produce the molecule above from m-dichlorobenzene. Calculate the theoretical yield for the reaction in question 2 using 1.5 g of p-dichlorobenzene and 3.0 mL isobutyl bromide. What signals appeared/disappeared/shifted that indicate that you have your intended product and not starting material? What other impurities are present in your product and how do you know?
Wintergreen from Aspirin: 1. In isolating the salicylic acid, why is it important to press out as much of the water as possible? 2. Write the mechanism of the esterification reaction you did. 3. What characteristic absorption band changes would you expect in the IR spectrum on going from aspirin to salicyclic acid and then to methyl salicylate as you did in the experiment today? Give approximate wavenumbers associated with each functional group change. What signals appeared/disappeared/shifted that indicate that you have your intended product and not starting material? What other impurities are present in your product and how do you know?

Chapter 19 Solutions

Organic Chemistry

Ch. 19.6 - Prob. 19.11PCh. 19.7 - Prob. 19.12PCh. 19.8 - Prob. 19.13PCh. 19.8 - Prob. 19.14PCh. 19.8 - Prob. 19.15PCh. 19.8 - Prob. 19.16PCh. 19.9 - Prob. 19.17PCh. 19.9 - Prob. AQCh. 19.9 - Prob. BQCh. 19.9 - Prob. CQCh. 19.9 - Prob. DQCh. 19.9 - Prob. EQCh. 19.9 - Prob. FQCh. 19.9 - Prob. GQCh. 19.9 - Intermediate G in Synthesis III is produced as a...Ch. 19.9 - Prob. IQCh. 19.9 - Prob. JQCh. 19 - Prob. 19.18PCh. 19 - Prob. 19.19PCh. 19 - Prob. 19.20PCh. 19 - Prob. 19.21PCh. 19 - Prob. 19.22PCh. 19 - Prob. 19.23PCh. 19 - Cyclohexene can be converted to...Ch. 19 - Prob. 19.25PCh. 19 - Prob. 19.26PCh. 19 - Prob. 19.27PCh. 19 - Prob. 19.28PCh. 19 - Prob. 19.29PCh. 19 - Prob. 19.30PCh. 19 - Draw structural formulas for the -ketoesters...Ch. 19 - Prob. 19.32PCh. 19 - Prob. 19.33PCh. 19 - Propose a synthesis for each ketone, using as one...Ch. 19 - Prob. 19.35PCh. 19 - Claisen condensation between diethyl phthalate and...Ch. 19 - Prob. 19.37PCh. 19 - Prob. 19.38PCh. 19 - Prob. 19.39PCh. 19 - Enamines normally react with methyl iodide to give...Ch. 19 - Prob. 19.41PCh. 19 - Prob. 19.42PCh. 19 - Prob. 19.43PCh. 19 - Prob. 19.44PCh. 19 - Prob. 19.45PCh. 19 - Prob. 19.46PCh. 19 - Prob. 19.47PCh. 19 - Prob. 19.48PCh. 19 - Prob. 19.49PCh. 19 - Prob. 19.50PCh. 19 - Prob. 19.51PCh. 19 - Prob. 19.52PCh. 19 - Show experimental conditions by which to carry out...Ch. 19 - Prob. 19.55PCh. 19 - The compound 3,5,5-trimethyl-2-cyclohexenone can...Ch. 19 - Prob. 19.57PCh. 19 - Prob. 19.58PCh. 19 - The widely used anticoagulant warfarin (see...Ch. 19 - Following is a retrosynthetic analysis for an...Ch. 19 - Following are the steps in one of the several...Ch. 19 - Prob. 19.62PCh. 19 - Prob. 19.63PCh. 19 - Prob. 19.65PCh. 19 - Prob. 19.67PCh. 19 - Prob. 19.68PCh. 19 - Prob. 19.69PCh. 19 - In Problem 7.28, we saw this two-step sequence in...Ch. 19 - Using your reaction roadmaps as a guide, show how...Ch. 19 - Using your reaction roadmaps as a guide, show how...Ch. 19 - Using your reaction roadmaps as a guide, show how...Ch. 19 - Using your reaction roadmaps as a guide, show how...Ch. 19 - Using your reaction roadmaps as a guide, show how...Ch. 19 - Prob. 19.79PCh. 19 - Prob. 19.80PCh. 19 - Prob. 19.81PCh. 19 - The following molecule undergoes an intramolecular...
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
  • Text book image
    Organic Chemistry: A Guided Inquiry
    Chemistry
    ISBN:9780618974122
    Author:Andrei Straumanis
    Publisher:Cengage Learning
    Text book image
    Organic Chemistry
    Chemistry
    ISBN:9781305580350
    Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. Foote
    Publisher:Cengage Learning
    Text book image
    Organic Chemistry
    Chemistry
    ISBN:9781305080485
    Author:John E. McMurry
    Publisher:Cengage Learning
Text book image
Organic Chemistry: A Guided Inquiry
Chemistry
ISBN:9780618974122
Author:Andrei Straumanis
Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9781305580350
Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. Foote
Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9781305080485
Author:John E. McMurry
Publisher:Cengage Learning