Interpretation:
The set of equations (or a small program) to evaluate the constant-volume heat capacity for a moleculeis to be stated. The graph of the result is to be plotted. The trend for the same is to be stated. The heat capacity versus temperature (say from
Concept introduction:
The heat capacity at constant volume for nonlinear polyatomic molecule is given by the formula,
Where,
•
•
•
•
Answer to Problem 18.59E
The set of equations (or a small program) to evaluate the constant-volume heat capacity for a molecule are,
•
•
•
•
•
•
•
The plot between
The plot between
Explanation of Solution
The heat capacity at constant volume for nonlinear polyatomic molecule is given by the formula,
The set of equations(or a small program) to evaluate the constant-volume heat capacity for a molecule are shown below.
•
•
•
•
•
•
•
The vibrational temperatures for
Substitute the value of vibrational temperatures for
The value of
The plot between
Figure 1
The three vibrational temperatures for
Substitute the value of vibrational temperatures for
The value of
The plot between
Figure 2
The set of equations (or a small program) to evaluate the constant-volume heat capacity for a molecule are,
•
•
•
•
•
•
•
The plot between
Want to see more full solutions like this?
Chapter 18 Solutions
Physical Chemistry
- A 1.00 mol sample of H2 is carefully warmed from 22 K to 40 K at constant volume. a What is the expected heat capacity of the hydrogen? b What is q for the process?arrow_forwardDefine the following terms: potential energy, kinetic energy, path-dependent function, state function, system, surroundings.arrow_forwardWhat are the numerical values of the heat capacities c-v and c-p of a monatomic ideal gas,in units of cal/mol.K and L.atm/mol.K?arrow_forward
- Assume that 1.20 g of benzoicacid, C6H5COOH, is burned in a porcelain dish exposed to the air.If 31, 723 J of energy is givenoff andthe surrounding temperature is 24.6C, calculate q, w, H,and U. Compare your answers to those from the previousproblem.arrow_forward• define state functions and explain their importance.arrow_forwardA sample of ethanol, C2H5OH, weighing 2.84 g was burned in an excess of oxygen in a bomb calorimeter. The temperature of the calorimeter rose from 25.00C to 33.73C. If the heat capacity of the calorimeter and contents was 9.63 kJ/C, what is the value of q for burning 1.00 mol of ethanol at constant volume and 25.00C? The reaction is C2H5OH(l)+3O2(g)2CO2(g)+3H2O(l) Is q equal to U or H?arrow_forward
- Nitrogen gas (2.75 L) is confined in a cylinder under constant atmospheric pressure (1.01 105 pascals). The volume of gas decreases to 2.10 L when 485 J of energy is transferred as heat to the surroundings. What is the change in internal energy of the gas?arrow_forwardThe statement Energycan beneithercreatednor destroyedis sometimes used as an equivalent statement of the first law of thermodynamics. There areinaccuracies to the statement, however. Restate it tomake it less inaccurate.arrow_forwardA sample of benzene, C6H6, weighing 3.51 g was burned in an excess of oxygen in a bomb calorimeter. The temperature of the calorimeter rose from 25.00C to 37.18C. If the heat capacity of the calorimeter and contents was 12.05 kJ/C, what is the value of q for burning 1.00 mol of benzene at constant volume and 25.00C? The reaction is C6H6(l)+152O2(g)6CO2(g)+3H2O(l) Is q equal to U or H?arrow_forward
- Gasohol, a mixture of gasoline and ethanol, C2H5OH, is used as automobile fuel. The alcohol releases energy in a combustion reaction with O2. C2H5OH(l)+3O2(g)2CO2(g)+3H2O(l) If 0.115 g ethanol evolves 3.62 kJ when burned at constant pressure, calculate the combustion enthalpy for ethanol.arrow_forwardWhen 178.0 J of energy is supplied as heat to 1.90 mol of gas molecules, the temperature of the system increases by 1.78 K. Calculate the molar heat capacity at constant pressure.arrow_forwardA sample of methane of mass 45.00 g initially occupies 13.11 L at 310.0 K. Calculate the work done when the gas expands isothermally and reversiblly until its volume increases to 17.41 L. 1 Torr = 133.33 Pa; MW of methane = 16.04 g/mol and R=8.3145 J/K mol. W = J. 4 sig. fig.arrow_forward
- Physical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage Learning
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning