Physical Chemistry
2nd Edition
ISBN: 9781133958437
Author: Ball, David W. (david Warren), BAER, Tomas
Publisher: Wadsworth Cengage Learning,
expand_more
expand_more
format_list_bulleted
Question
Chapter 18, Problem 18.56E
Interpretation Introduction
Interpretation:
The validation of the fact that both Einstein’s and Debye’s expressions for the heat capacity of crystals agree with the fact that
Concept introduction:
Statistical
It is also called as canonical ensemble partition function.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The French chemists, Pierre L. Dulong and Alexis T. Petit, noted in 1819 that the molar heat capacity of many solids at ordinary temperatures is proportional to the number of atoms per formula unit of the solid. They quantified their observations in what is known as Dulong and Petit's rule, which says that the molar heat capacity, ??CP , of a solid can be expressed as
??=?⋅3?CP=N⋅3R
where ?N is the number of atoms per formula unit and ?R is the universal gas constant.
The observed heat capacity per gram of a compound containing thallium and chlorine is 0.21 J·K−1·g−10.21 J·K−1·g−1 . Use Dulong and Petit's rule to determine the empirical formula of the compound.
When 229 J of energy is supplied as heat to 3.00 mol Ar(g), the temperature of the sample increases by 2.55 K. Calculate the molar heat capacities at constant volume and constant pressure of the gas.
Part A: Methane at low temperatures
Methane (CH4) is a tetrahedral molecule. Determine its specific heat capacity (at
constant volume) at very low temperatures.
Enter the value in units of the universal gas constant R.
Hint: Remember that both vibrational and rotational modes are "frozen out" at low
temperatures. What does the motion of a polyatomic gas molecule look like if it
cannot vibrate or rotate?
Cv,low = ?
Part B: Methane at moderate temperatures
Determine the specific heat capacity (at constant volume) of methane at moderate
temperatures.
Chapter 18 Solutions
Physical Chemistry
Ch. 18 - Prob. 18.1ECh. 18 - Prob. 18.2ECh. 18 - Prob. 18.3ECh. 18 - Prob. 18.4ECh. 18 - The following are the first four electronic energy...Ch. 18 - Prob. 18.6ECh. 18 - Prob. 18.7ECh. 18 - Prob. 18.8ECh. 18 - Prob. 18.9ECh. 18 - Prob. 18.10E
Ch. 18 - Prob. 18.11ECh. 18 - Prob. 18.12ECh. 18 - Prob. 18.13ECh. 18 - Prob. 18.14ECh. 18 - Prob. 18.15ECh. 18 - Prob. 18.16ECh. 18 - Prob. 18.17ECh. 18 - Prob. 18.18ECh. 18 - Prob. 18.19ECh. 18 - Prob. 18.20ECh. 18 - Prob. 18.21ECh. 18 - Prob. 18.22ECh. 18 - Prob. 18.23ECh. 18 - Prob. 18.24ECh. 18 - Prob. 18.25ECh. 18 - Prob. 18.26ECh. 18 - Prob. 18.27ECh. 18 - Prob. 18.28ECh. 18 - Prob. 18.29ECh. 18 - Prob. 18.30ECh. 18 - Prob. 18.31ECh. 18 - Prob. 18.32ECh. 18 - Prob. 18.33ECh. 18 - What are qnuc and qrot for N2(I=1)? See Table 18.3...Ch. 18 - The rovibrational spectrum of acetylene, HCCH,...Ch. 18 - Prob. 18.36ECh. 18 - Prob. 18.37ECh. 18 - Prob. 18.38ECh. 18 - Prob. 18.39ECh. 18 - Prob. 18.40ECh. 18 - Prob. 18.41ECh. 18 - Prob. 18.42ECh. 18 - Use equation 18.44 to show that pV=NkT.Ch. 18 - Prob. 18.44ECh. 18 - Determine E,H,G, and S for CH4 at standard...Ch. 18 - Prob. 18.48ECh. 18 - Prob. 18.49ECh. 18 - Calculate the heat capacity of NO2 at 298K and...Ch. 18 - Prob. 18.51ECh. 18 - In Chapters 17 and 18 we have derived expressions...Ch. 18 - Prob. 18.55ECh. 18 - Prob. 18.56ECh. 18 - Prob. 18.57ECh. 18 - Prob. 18.58ECh. 18 - Prob. 18.59ECh. 18 - Prob. 18.60E
Knowledge Booster
Similar questions
- A 1.00 mol sample of H2 is carefully warmed from 22 K to 40 K at constant volume. a What is the expected heat capacity of the hydrogen? b What is q for the process?arrow_forwardIn the equation w = P V, why is there a negative sign?arrow_forwardDefine the following terms: potential energy, kinetic energy, path-dependent function, state function, system, surroundings.arrow_forward
- Starting with equation 2.27 andthe original definitionof enthalpy, derive the fact that Cp-=Cv-+Rarrow_forwardAssume that 1.20 g of benzoicacid, C6H5COOH, is burned in a porcelain dish exposed to the air.If 31, 723 J of energy is givenoff andthe surrounding temperature is 24.6C, calculate q, w, H,and U. Compare your answers to those from the previousproblem.arrow_forwardDetermine an expression for V/T p, n in terms of and . Does the sign on the expression make sense in terms of what you know happens to volume as temperature changes?arrow_forward
- A sample of ethanol, C2H5OH, weighing 2.84 g was burned in an excess of oxygen in a bomb calorimeter. The temperature of the calorimeter rose from 25.00C to 33.73C. If the heat capacity of the calorimeter and contents was 9.63 kJ/C, what is the value of q for burning 1.00 mol of ethanol at constant volume and 25.00C? The reaction is C2H5OH(l)+3O2(g)2CO2(g)+3H2O(l) Is q equal to U or H?arrow_forward9.42 Why is enthalpy generally more useful than internal energy in the thermodynamics of real world systems?arrow_forwardWhat will be the molar heat capacity at constant pressure of the gas when 229 J of energy is supplied as heat to 3.00 mol Ar(g) at a constant volume, the temperature of the sample decreases from 318 to 315.45 K.arrow_forward
- A sample of 4.50 g of methane occupies 12.7 dm³ at 310 K. (a) Calculate the work done when the gas expands isothermally against a constant external pressure of 200 Torr until its volume has increased by 3.3 dm³. (b) Calculate the work that would be done if the same expansion occurred reversibly.arrow_forwardHow much energy does it take to raise the temperature of 1.0 mol H2O(g) from 100 °C to 200 °C at constant volume? Consider only translational and rotational contributions to the heat capacity.arrow_forwardA sample of methane of mass 45.0 g occupies a container at 310 K. Calculate the work done when the gas expands isothermally against a constant external pressure of 200 Torr until its volume increases by 12.11 L. 1 Torr = 133.33 Pa; MW of methane = 16.04 g/mol and R=8.3145 J/K mol. W= J. 4 sig. fig.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage Learning
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
Physical Chemistry
Chemistry
ISBN:9781133958437
Author:Ball, David W. (david Warren), BAER, Tomas
Publisher:Wadsworth Cengage Learning,
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning