Physical Chemistry
2nd Edition
ISBN: 9781133958437
Author: Ball, David W. (david Warren), BAER, Tomas
Publisher: Wadsworth Cengage Learning,
expand_more
expand_more
format_list_bulleted
Question
Chapter 18, Problem 18.24E
Interpretation Introduction
Interpretation:
The vibrational partition function for
Concept introduction:
A molecule is made up of atoms that are bonded together by covalent bonds. These bonds undergo a to and fro movement to vibrate. This vibration of the molecule contributes to the overall partition function of the system. The vibrational partition function of the polyatomic molecule is represented as,
Where,
•
•
•
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
2. The rotational partition function of an ethene molecule is 661 at 25°C. What is the
rotational contribution to its molar entropy?
The methyl chloride molecule, CH3Cl, has three non-degenerate vibrations with harmonic wavenumbers 3088, 1396 and 751 cm–1 respectively and three doubly-degenerate vibrations with harmonic wavenumbers 3183, 1496 and 1036 cm–1 respectively. Calculate the vibrational partition function for the methyl chloride molecule at 1200 K.
Part A
Determine the total molecular partition function for gaseous H2O at 1000. K confined to a volume of 2.20
cm³. The rotational constants for water are BA = 27.8 cm, BB = 14.5 cm¯', and
Bc = 9.95 cm. The vibrational frequencies are 1615, 3694, and 3802 cm-. The ground electronic
state is nondegenerate. (Note: the Avogadro's constant NA = 6.022 × 1023 mol-1).
Express your answer to three significant figures.
Ην ΑΣφ
qtotal =
Submit
Request Answer
Chapter 18 Solutions
Physical Chemistry
Ch. 18 - Prob. 18.1ECh. 18 - Prob. 18.2ECh. 18 - Prob. 18.3ECh. 18 - Prob. 18.4ECh. 18 - The following are the first four electronic energy...Ch. 18 - Prob. 18.6ECh. 18 - Prob. 18.7ECh. 18 - Prob. 18.8ECh. 18 - Prob. 18.9ECh. 18 - Prob. 18.10E
Ch. 18 - Prob. 18.11ECh. 18 - Prob. 18.12ECh. 18 - Prob. 18.13ECh. 18 - Prob. 18.14ECh. 18 - Prob. 18.15ECh. 18 - Prob. 18.16ECh. 18 - Prob. 18.17ECh. 18 - Prob. 18.18ECh. 18 - Prob. 18.19ECh. 18 - Prob. 18.20ECh. 18 - Prob. 18.21ECh. 18 - Prob. 18.22ECh. 18 - Prob. 18.23ECh. 18 - Prob. 18.24ECh. 18 - Prob. 18.25ECh. 18 - Prob. 18.26ECh. 18 - Prob. 18.27ECh. 18 - Prob. 18.28ECh. 18 - Prob. 18.29ECh. 18 - Prob. 18.30ECh. 18 - Prob. 18.31ECh. 18 - Prob. 18.32ECh. 18 - Prob. 18.33ECh. 18 - What are qnuc and qrot for N2(I=1)? See Table 18.3...Ch. 18 - The rovibrational spectrum of acetylene, HCCH,...Ch. 18 - Prob. 18.36ECh. 18 - Prob. 18.37ECh. 18 - Prob. 18.38ECh. 18 - Prob. 18.39ECh. 18 - Prob. 18.40ECh. 18 - Prob. 18.41ECh. 18 - Prob. 18.42ECh. 18 - Use equation 18.44 to show that pV=NkT.Ch. 18 - Prob. 18.44ECh. 18 - Determine E,H,G, and S for CH4 at standard...Ch. 18 - Prob. 18.48ECh. 18 - Prob. 18.49ECh. 18 - Calculate the heat capacity of NO2 at 298K and...Ch. 18 - Prob. 18.51ECh. 18 - In Chapters 17 and 18 we have derived expressions...Ch. 18 - Prob. 18.55ECh. 18 - Prob. 18.56ECh. 18 - Prob. 18.57ECh. 18 - Prob. 18.58ECh. 18 - Prob. 18.59ECh. 18 - Prob. 18.60E
Knowledge Booster
Similar questions
- A certain atom has a triply degenerate ground level, a non-degenerate electronically excited level at 850 cm–1, and a fivefold degenerate level at 1100 cm−1. Calculate the partition function of these electronic states at 2000 K. What is the relative population of each level at 2000 K?arrow_forwardN2O and CO2 have similar rotational constants (12.6 and 11.7 GHz, respect ively) but strikingly different rotational partition functions. Why?arrow_forwardDiscuss the relation between the thermodynamic and statistical definitions of entropy.arrow_forward
- A certain molecule can exist in either a nondegenerate singlet state or a triplet state (with degeneracy of 3). The energy of the triplet exceeds that of the singlet by ε. When ?=??(where T is a set value, i.e., ? is a constant), calculate the values of the molecular partition function, molar heat capacity, and molar entropy. Assume the molecules are distinguishable and independentarrow_forwardA certain atom has a fourfold degenerate ground level, a non-degenerate electronically excited level at 2500 cm−1, and a twofold degenerate level at 3500 cm−1. Calculate the partition function of these electronic states at 1900 K. What is the relative population of each level at 1900 K?arrow_forwardEstimate the vibrational contribution to the molar entropy of the most common isotopomer of bromine, 79Br2, at 1000 K. The vibrational wavenumber for 79Br2 is 325 cm-1. You may assume that at this temperature, the equipartition theorem and the high temperature approximation for the vibrational partition function are both valid.arrow_forward
- The bond length of O2 is 120.75 pm. Use the high-temperature approximation to calculate the rotational partition function of the molecule at 300 K.arrow_forwardCalculate, by explicit summation, the vibrational partition function of I2 molecules at (a) 100 K, (b) 298 K given that its vibrational energy levels lie at the following wavenumbers above the zero-point energy level: 0, 215.30, 425.39, 636.27, 845.93 cm−1. What proportion of I2 molecules are in the ground and first two excited levels at the two temperatures?arrow_forward14. Calculate the electronic partition function for a bromine atom at 1000 and 10,000 Kelvin. The ground state has a degeneracy of g=4 and the first excited state has a degeneracy of g=2 with an energy of 7.3x10^-20 J above the ground state.arrow_forward
- 5. The vibrational modes of a particular molecule are listed below. Calculate the vibrational contribution to the molar entropy at 300 K. Mode Degeneracy wavenumber / cm-1 v1 206 v2 305 v3 1083 v4 1367 USEFUL CONSTANTS R = 8.314 J/mol/K = 0.08205 Latm/mol/K kB =1.38 x10-23 J/K h = 6.626×10-34 J s c = 3x108 m/s 1 cm-1 = 1.98x10-23 J STP = 298 K, 1bar (105 N/m²) 12 3arrow_forwardA system comprising of one mole of distinguishable and non-interacting molecules has a two-fold degenerate ground energy level, a two-fold degenerate excited energy level at 1237 cm1 and a nondegenerate excited energy level at 2010 cm-1 at 300 K and 1 atm. Calculate (b) the partition function, q. (1) the number of molecules in each energy level. the change in the ratio of the molecules in the first excited energy level with respect to the ground energy level when the temperature increases by 10-fold. (ii) (iv) the total energy, E. (v) the partition function when T = 0.arrow_forwardCalculate the molecular rotational partition function for 14N2 at 298"K for both molecules. The internuclear distance for 14N2 is 0.1095 nm. O 13.21 O 24.85 O 579.10 O 1.74 O 5144arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,
Physical Chemistry
Chemistry
ISBN:9781133958437
Author:Ball, David W. (david Warren), BAER, Tomas
Publisher:Wadsworth Cengage Learning,