Physical Chemistry
Physical Chemistry
2nd Edition
ISBN: 9781133958437
Author: Ball, David W. (david Warren), BAER, Tomas
Publisher: Wadsworth Cengage Learning,
Question
Book Icon
Chapter 18, Problem 18.19E
Interpretation Introduction

Interpretation:

The values of θv and qvib for F2 at 298K are to be calculated.

Concept introduction:

A molecule is made up of atoms that are bonded together by covalent bonds. These bonds undergo a to and fro movement to vibrate. This vibration of the molecule contributes to the overall partition function of the system. The vibrational partition function of the diatomic atom at is represented as,

qvib=11ehv/kT

Where,

k represents the Boltzmann constant with value 1.381×1023J/K.

T represents the temperature (K).

h represents Plank’s constant with a value 6.626×1034Js.

v represents vibrational frequency.

Blurred answer
Students have asked these similar questions
The vibrational temperature of a molecule prepared in a supersonic jet can be estimated from the observed popula- tions of its vibrational levels, assuming a Boltzmann distri- bution. The vibrational frequency of HgBr is 5.58 × 1012 s-1, and the ratio of the number of molecules in the n = 1 state to the number in the n = 0 state is 0.127. Estimate the vibra- tional temperature under these conditions.
Calculate the relative populations of the J = 2 and J = 1 rotational levels of HCI at 25 oC. For HCI the rotational constant is B =318.0 GHz.
Estimate the ratio of the number of molecules in the firstexcited vibrational state of the molecule N2 to the numberin the ground state, at a temperature of 450 K. The vibrational frequency of N2 is 7.07 × 1013 s-1.
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Fundamentals Of Analytical Chemistry
Chemistry
ISBN:9781285640686
Author:Skoog
Publisher:Cengage
Text book image
Physical Chemistry
Chemistry
ISBN:9781133958437
Author:Ball, David W. (david Warren), BAER, Tomas
Publisher:Wadsworth Cengage Learning,
Text book image
Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning