Physical Chemistry
2nd Edition
ISBN: 9781133958437
Author: Ball, David W. (david Warren), BAER, Tomas
Publisher: Wadsworth Cengage Learning,
expand_more
expand_more
format_list_bulleted
Question
Chapter 18, Problem 18.20E
Interpretation Introduction
Interpretation:
The values of
Concept introduction:
A molecule is made up of atoms that are bonded together by covalent bonds. These bonds undergo a to and fro movement to vibrate. This vibration of the molecule contributes to the overall partition function of the system. The vibrational partition function of the diatomic atom at is represented as,
Where,
•
•
•
•
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The vibrational energy levels for XO molecule can be described by the following formula:
E(n) in Joule =
1.88x10-20(n+1/2) – 2.68x10-22(n+1/2)²
where n is the vibrational quantum number. What would be the equilibrium dissociation energy (De) of the XO molecule in a kJ mol-1?
A molecule in a liquid undergoes about 1.0 × 1013 collisions in each second. Suppose that (i) every collision is effective in deactivating the molecule vibrationally and (ii) that one collision in 100 is effective. Calculate the width (in cm−1) of vibrational transitions in the molecule.
E rotational is 2.777×10−20 J
Chapter 18 Solutions
Physical Chemistry
Ch. 18 - Prob. 18.1ECh. 18 - Prob. 18.2ECh. 18 - Prob. 18.3ECh. 18 - Prob. 18.4ECh. 18 - The following are the first four electronic energy...Ch. 18 - Prob. 18.6ECh. 18 - Prob. 18.7ECh. 18 - Prob. 18.8ECh. 18 - Prob. 18.9ECh. 18 - Prob. 18.10E
Ch. 18 - Prob. 18.11ECh. 18 - Prob. 18.12ECh. 18 - Prob. 18.13ECh. 18 - Prob. 18.14ECh. 18 - Prob. 18.15ECh. 18 - Prob. 18.16ECh. 18 - Prob. 18.17ECh. 18 - Prob. 18.18ECh. 18 - Prob. 18.19ECh. 18 - Prob. 18.20ECh. 18 - Prob. 18.21ECh. 18 - Prob. 18.22ECh. 18 - Prob. 18.23ECh. 18 - Prob. 18.24ECh. 18 - Prob. 18.25ECh. 18 - Prob. 18.26ECh. 18 - Prob. 18.27ECh. 18 - Prob. 18.28ECh. 18 - Prob. 18.29ECh. 18 - Prob. 18.30ECh. 18 - Prob. 18.31ECh. 18 - Prob. 18.32ECh. 18 - Prob. 18.33ECh. 18 - What are qnuc and qrot for N2(I=1)? See Table 18.3...Ch. 18 - The rovibrational spectrum of acetylene, HCCH,...Ch. 18 - Prob. 18.36ECh. 18 - Prob. 18.37ECh. 18 - Prob. 18.38ECh. 18 - Prob. 18.39ECh. 18 - Prob. 18.40ECh. 18 - Prob. 18.41ECh. 18 - Prob. 18.42ECh. 18 - Use equation 18.44 to show that pV=NkT.Ch. 18 - Prob. 18.44ECh. 18 - Determine E,H,G, and S for CH4 at standard...Ch. 18 - Prob. 18.48ECh. 18 - Prob. 18.49ECh. 18 - Calculate the heat capacity of NO2 at 298K and...Ch. 18 - Prob. 18.51ECh. 18 - In Chapters 17 and 18 we have derived expressions...Ch. 18 - Prob. 18.55ECh. 18 - Prob. 18.56ECh. 18 - Prob. 18.57ECh. 18 - Prob. 18.58ECh. 18 - Prob. 18.59ECh. 18 - Prob. 18.60E
Knowledge Booster
Similar questions
- Emission of microwave radiation from the J = 10 transition of a molecule has been detected at 88.63 GHz from a region of interstellar space in which there is evidence of thermal equilibrium and a temperature of around 50 K. Estimate the frequency and relative intensity of the J = 2 → 1 transition of the same molecule.arrow_forwardVibrations in the diatomic molecule CO can be approximated as a harmonic oscillator, where the angular frequency w = 6.505 x 1013 Hz and the reduced mass is equal to u = 1.14 × 10-27 kg. Assume the molecule is in its fırst excited vibrational state. Its vibrational wavefunction can then be written as V1 (x) = (4) /2a xe where a = . If we were to measure the bond length of the molecule, what is the most likely displacement from the equilibrium bond distance in the first excited vibrational state? Give your answer in Angstroms [Note: The equilibrium displacement in the Quantum harmonic oscillator corresponds to r = 0, ie the coordinate x measures displacement from equilibrium]arrow_forwardRotational spectra are affected slightly by the fact that different isotopes have different masses. Suppose a sample of the common isotope 1H35Cl is changed to 1H37Cl. (a) By what fraction is the molecule’s rotational inertia different? (The bond length is 0.127 nm in each case.) (b) What is the change in energy of theℓ = 1 to theℓ = 0 transition if the isotope is changed?arrow_forward
- In a molecule of hydrogen iodide HI (HI is used in organic and inorganic synthesis as one of the main sources of iodine and as a reducing agent) the vibrational frequency of the molecule is 6.69x10^13 Hz. Iodine is much more heavier than hydrogen, so I can be considered immobile compared to H. Determine the expected value of the potential energy for the hydrogen atom in this molecule in the ground state. Use this to calculate the expected value of the kinetic energy.arrow_forwardThe vibrational frequency of the ICl molecule is 1.15 ×1013 s-1. For every million (1.00 × 106) molecules in the ground vibrational state, how many will be in the first excited vibrational state at a temperature of 300 K?arrow_forward(c) When a gas is expanded very rapidly, its temperature can fall to a few degrees Kelvin. At these low temperatures, unusual molecules like ArHCl (Argon weakly bonded to HCl) can form on mixing. For the isotopic species Ar H$CI, the following rotational transitions were observed: J (1 → 2): 6714.44 MHz J (2 → 3): 10068.90 MHz Assume the molecule can be treated as a linear diatomic molecule (ArCl). (i) Calculate the rotational constant (B) and centrifugal distortion (D) constant for this molecule.arrow_forward
- The J = 0 to J = 1 rotational transition of the CO molecule occurs at a frequency of 1.15 x 1011 Hz.(A) Use this information to calculate the moment of inertia of the molecule. (B) Calculate the bond length of the molecule.arrow_forwardAs noted in lecture, the rigid rotor model can be improved by recognizing that in a realistic anharmonic potential, the bond length increases with the vibrational quantum number v. Thus, the rotational constant depends on v, and it can be shown that By = Be – ae(v +). For 'H®Br, B = 8.473 cm1 and a = 0.226 cm². Use this information to calculate the bond length for HBr a) as a rigid rotor, and b) as a nonrigid rotor in the ground vibrational state. Find a literature value for this bond length (cite your source) and compare your answers. Under what conditions would you expect the nonrigid rotor to be a significantly better model?arrow_forwardA molecule in a gas undergoes about 1.0 × 109 collisions in each second. Suppose that (a) every collision is effective in deactivating the molecule rotationally and (b) that one collision in 10 is effective. Calculate the width (in cm³¹) of rotational transitions in the molecule.arrow_forward
- A diatomic molecule containing 35Cl and another atom has a rotational transition from J=0 to J=1 corresponding to a frequency of 7.70×109 Hz. The bond length is 267 pm. Use this information to calculate the reduced mass of the molecule, then find the atomic mass number of the other atom.arrow_forwardThe moment of inertia of CH4 can be ca lcu lated from the expression I= 8/3 MHR2 where R = 109 pm is the CH bond length. Ca lcu late the minimum rotational energy (other than zero) of the molecule and the degeneracy of that rotational state.arrow_forwardEstimate the ratio of the number of molecules in the first excited vibrational state of the molecule N2 to the number in the ground state, at a temperature of 450 K. The vibrational frequency of N2 is 7.07 × 1013 s-1.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage Learning
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning