Physical Chemistry
2nd Edition
ISBN: 9781133958437
Author: Ball, David W. (david Warren), BAER, Tomas
Publisher: Wadsworth Cengage Learning,
expand_more
expand_more
format_list_bulleted
Question
Chapter 18, Problem 18.27E
Interpretation Introduction
Interpretation:
The value of the rotational partition function for
Concept introduction:
The rotational partition function for the linear molecules is,
Where,
•
•
•
•
•
•
The partition function is a unitless quantity.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The rotational constant for the molecule 1H35Cl is B = 10.60 cm-1. Using Boltzmann statistics, determine the most likely rotational state J that such a molecule would be expected to have at a
temperature of 300 K.
the rotational constant for 1H35Cl is 10.6 cm-1 . What are the degeneracies, g, of the J=2, and J=3 rotational states?
The rotationa l energy of a linear or spherical molecule with quantum number J is EJ = hBJ(J + 1 ). For a linear molecule. each rotational level has a degeneracy of (2J + 1 ). For a spherical molecule, the degeneracy is (2J + 1 )2 (a) Calculate the ratio of populations of CO2 molecules with J = 4 and J = 2 at 25 °C, given that the rotational constant of CO2 is B = 11.70 GHz. (b) Also calculate the ratio of populations of CH4 molecules with J = 4 and J = 2 at 25 °C, given that the rotational constant of CH4 is 157 GHz.
Chapter 18 Solutions
Physical Chemistry
Ch. 18 - Prob. 18.1ECh. 18 - Prob. 18.2ECh. 18 - Prob. 18.3ECh. 18 - Prob. 18.4ECh. 18 - The following are the first four electronic energy...Ch. 18 - Prob. 18.6ECh. 18 - Prob. 18.7ECh. 18 - Prob. 18.8ECh. 18 - Prob. 18.9ECh. 18 - Prob. 18.10E
Ch. 18 - Prob. 18.11ECh. 18 - Prob. 18.12ECh. 18 - Prob. 18.13ECh. 18 - Prob. 18.14ECh. 18 - Prob. 18.15ECh. 18 - Prob. 18.16ECh. 18 - Prob. 18.17ECh. 18 - Prob. 18.18ECh. 18 - Prob. 18.19ECh. 18 - Prob. 18.20ECh. 18 - Prob. 18.21ECh. 18 - Prob. 18.22ECh. 18 - Prob. 18.23ECh. 18 - Prob. 18.24ECh. 18 - Prob. 18.25ECh. 18 - Prob. 18.26ECh. 18 - Prob. 18.27ECh. 18 - Prob. 18.28ECh. 18 - Prob. 18.29ECh. 18 - Prob. 18.30ECh. 18 - Prob. 18.31ECh. 18 - Prob. 18.32ECh. 18 - Prob. 18.33ECh. 18 - What are qnuc and qrot for N2(I=1)? See Table 18.3...Ch. 18 - The rovibrational spectrum of acetylene, HCCH,...Ch. 18 - Prob. 18.36ECh. 18 - Prob. 18.37ECh. 18 - Prob. 18.38ECh. 18 - Prob. 18.39ECh. 18 - Prob. 18.40ECh. 18 - Prob. 18.41ECh. 18 - Prob. 18.42ECh. 18 - Use equation 18.44 to show that pV=NkT.Ch. 18 - Prob. 18.44ECh. 18 - Determine E,H,G, and S for CH4 at standard...Ch. 18 - Prob. 18.48ECh. 18 - Prob. 18.49ECh. 18 - Calculate the heat capacity of NO2 at 298K and...Ch. 18 - Prob. 18.51ECh. 18 - In Chapters 17 and 18 we have derived expressions...Ch. 18 - Prob. 18.55ECh. 18 - Prob. 18.56ECh. 18 - Prob. 18.57ECh. 18 - Prob. 18.58ECh. 18 - Prob. 18.59ECh. 18 - Prob. 18.60E
Knowledge Booster
Similar questions
- Calculate the rotational energy of CO at J=2 given a bond length of 1.0 Å. unit in eV.arrow_forwardEvaluate the rotational partition function of pyridine, C5H5N, at 25 °C given that ᷉ A = 0.2014 cm−1, ᷉ B = 0.1936 cm−1, ᷉ C = 0.0987 cm−1. Take the symmetry number into account.arrow_forwardCalculate the relative populations of the J = 2 and J = 1 rotational levels of HCI at 25 oC. For HCI the rotational constant is B =318.0 GHz.arrow_forward
- Calculate the rotational partition function for a non-linear molecule whose σ=5 at 25°C. Given A = 4.828 cm-1 , B = 1.015 cm-1 and C = 0.824 cm-1.arrow_forwardThe three normal modes of water are the symmetric stretch (3652 cm¹), the antisymmetric stretch (3756 cm¹), and the bend (1595 cm¹). (a) Calculate the molecular vibrational partition function of water at 500 K. (b) At 500 K, what fraction of water molecules have the bend excited to v₂=1. What fraction of water molecules have the symmetric stretch excited to v₁=1? Why do more molecules have the bend excited? (c) At 500 K, what fraction of water molecules have both v2-1 and v₁=1 excited?arrow_forwardEvaluate the rotational partition function at 298 K of (a) 1H35Cl. for which the rotational constant is 318 GHz, (b) 12C16O2, for which the rotational constant is 11.70 GHz.arrow_forward
- Consider the rotational temperatures of the following hetero diatomic molecules: θr(CO) = 2.1 K, θr(HF) = 30.2 K. In which case would the classical approximation be accurate? Justify your answer.arrow_forwardCalculate the standard molar entropy of O2(g) at 298 K from its rotational constant B=1.4457 cm and its vibrational wavenumber =1580 cm. O2 is a linear rotor with a symmetry number of 2 and a molecular weight of 32 g/mol.arrow_forwardCalculate the value of the translational partition function for 1H 35Cl at temperature T = 406 K in a 1.0 L containerarrow_forward
- Evaluate the translational partition function of (a) N2, (b) gaseous CS2 in a flask of volume 10.0 cm3. Why is one so much larger than the other?arrow_forwardThe NOF molecule is an asymmetric rotor with rotational constants 3.1752 cm−1, 0.3951 cm−1, and 0.3505 cm−1. Calculate the rotational partition function of the molecule at (i) 25 °C, (ii) 100 °C.arrow_forward(c) Consider the following rotational temperatures of diatomic molecules: qr(N2) = 2.9K, qr(HD) = 64.7K Assuming classical behaviour (i.e. continuum approximation): (i) Estimate the number of accessible rotational energy levels at 290 K for both moleculesarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY