Manufacturing Engineering & Technology
7th Edition
ISBN: 9780133128741
Author: Serope Kalpakjian, Steven Schmid
Publisher: Prentice Hall
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 16, Problem 78SDP
Repeat Problem 16.77, but design the box from a single piece of sheet metal.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A 10 mm thick plate is rolled to 7 mm thick in a rolling mill using 1000 mm diameter rigid rolls. The neutral point is located at an angle of 0.3 times the bite angle from the exit. What will be the thickness of the plate at the neutral point.
4)
In a rolling operation using a roll of diameter 1.5 m, if a 35 mm thick plate cannot be reduced to less than 12 mm in a single pass then calculate the coefficient of friction btween the rolls and the plate.
Chapter 16 Solutions
Manufacturing Engineering & Technology
Ch. 16 - How does sheet-metal forming differ from rolling,...Ch. 16 - What causes burrs? How can they be reduced or...Ch. 16 - Prob. 3RQCh. 16 - Describe the difference between compound,...Ch. 16 - Describe the characteristics of sheet metals that...Ch. 16 - Describe the features of forming-limit diagrams...Ch. 16 - List the properties of materials that influence...Ch. 16 - Give one specific application for each of the...Ch. 16 - Why do tubes buckle when bent? What is the effect...Ch. 16 - Define normal anisotropy, and explain why it is...
Ch. 16 - Describe earing and why it occurs.Ch. 16 - What are the advantages of rubber forming? Which...Ch. 16 - Explain the difference between deep drawing and...Ch. 16 - How is roll forming fundamentally different from...Ch. 16 - What is nesting? What is its significance?Ch. 16 - Describe the differences between compound,...Ch. 16 - What is microforming?Ch. 16 - Explain the advantages of superplastic forming.Ch. 16 - What is hot stamping? For what materials is it...Ch. 16 - What is springback? What is negative springback?Ch. 16 - Explain the differences that you have observed...Ch. 16 - Take any three topics from Chapter 2, and, with...Ch. 16 - Do the same as for Problem 16.22, but for Chapter...Ch. 16 - Identify the material and process variables that...Ch. 16 - Explain why springback in bending depends on yield...Ch. 16 - Explain why cupping tests may not predict well the...Ch. 16 - Identify the factors that influence the...Ch. 16 - Why are the beads in Fig. 16.36b placed in those...Ch. 16 - A general rule for dimensional relationships for...Ch. 16 - Section 16.2 stated that the punch stripping force...Ch. 16 - Is it possible to have ironing take place in an...Ch. 16 - Note the roughness of the periphery of the flanged...Ch. 16 - What recommendations would you make in order to...Ch. 16 - It has been stated that the quality of the sheared...Ch. 16 - Give several specific examples from this chapter...Ch. 16 - As you can see, some of the operations described...Ch. 16 - Through changes in clamping or die design, it is...Ch. 16 - How would you produce the part shown in Fig....Ch. 16 - It has been stated that the thicker the sheet...Ch. 16 - Prob. 41QTPCh. 16 - Calculate the value of R in Problem 16.41. Will...Ch. 16 - Estimate the limiting drawing ratio for the...Ch. 16 - Using Eq. (16.15) and the K value for TNT, plot...Ch. 16 - Section 16.5 states that the k values in bend...Ch. 16 - For explosive forming, calculate the peak pressure...Ch. 16 - Measure the respective areas of the solid outlines...Ch. 16 - Plot Eq. (16.6) in terms of the elastic modulus,...Ch. 16 - What is the minimum bend radius for a 1.0-mm-thick...Ch. 16 - Survey the technical literature and explain the...Ch. 16 - Using the data in Table 16.3 and referring to Eq....Ch. 16 - What is the force required to punch a square hole...Ch. 16 - In Case Study 16.2, it was stated that the reason...Ch. 16 - A cup is being drawn from a sheet metal that has a...Ch. 16 - Prob. 55QTPCh. 16 - Figure P16.57 shows a parabolic profile that will...Ch. 16 - Prob. 59SDPCh. 16 - Consider several shapes to be blanked from a large...Ch. 16 - Prob. 61SDPCh. 16 - Many axisymmetric missile bodies are made by...Ch. 16 - Metal cans are either two-piece (in which the...Ch. 16 - The design shown in Fig. P16.65 is proposed for a...Ch. 16 - Suggest consumer-product designs that could...Ch. 16 - How would you produce the part shown in Fig. 16.44...Ch. 16 - Using a ball-peen hammer, strike the surface of...Ch. 16 - Inspect a common paper punch and observe the shape...Ch. 16 - Obtain an aluminum beverage can and slit it in...Ch. 16 - Prob. 71SDPCh. 16 - Prob. 73SDPCh. 16 - On the basis of experiments, it has been suggested...Ch. 16 - Design a box that will contain a 4-in. 6-in. ...Ch. 16 - Repeat Problem 16.77, but design the box from a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A drawing operation is used to form a cylindrical cup with inside diameter of 75 mm and height of 50 mm. The starting blank size is 140 mm and the stock thickness is 2.4 mm Except that the starting blank size diameter is 160 mm, compute the drawing forceand The holding force given that the tensile strength of the sheet metal = 490MPa and (7)yield strength = 200 MPa.arrow_forwardA cup of internal diameter 80 mm and height 45 mm is to be drawn from a sheet metal 2 mm thick. Four blank sizes are available for the operation. You want to ensure the blank is large enough to make the required cup height while minimizing the material waste. Calculate the starting blank diameter for this operation?arrow_forwardIn a sheet metal forming press, the shape to be formed is hemispherical cup of radius 15 cm in 2mm thick mild steel sheet. The force required to deform sheet is 8 kN. The forming hammer should approach job from a distance of 30 cm. The production rate required is 240 components/hr. Calculate and suggest the following specifications of the various hydraulic components used: a. Hydraulic cylinder (bore & length); b. Pump pressure and flow rate; c. Electric motor HP considering 75% pump efficiency; d. Reservoir size; and e. Size of pump inlet and discharge tubing.arrow_forward
- Hi, the diameter is 10 mm in my problem, not 15 mm.arrow_forwardA piece with a height of 120 mm and a diameter of 75 mm can be increased to 80 mm in height by pile-forging.is reduced. The coefficient of friction between the workpiece and the mold is 0.13. Flow curve of the workpiece, 165It is defined by a strength coefficient of MPa and a hardening exponent of 0.24. force during operationCalculate at the moments given below and obtain the force-workpiece height graph(1) as soon as it reaches the yield point (yield strain = 0.002),(2) height h = 115 mm,(3) height h = 110 mm,(4) height h = 105mm,(5) height h = 100mm,(6) height h=95mm,(7) height h = 90 mm,(8) height h = 85mm,(9) height h = 80 mm,arrow_forwardIn a stamping operation, a 2 mm thick stainless steel sheet with an ultimate tensile strenght of 900 MPa is used. For a given blank size of 200 mm x 200 mm, calculate the punching force required to make a sheet metal part with 20 circle holes, each 4 mm and 10 square holes each with an edge of 5 mm. (1)arrow_forward
- Please solve in 10 minarrow_forward6.100 A 0.25-m-wide billet of 5052-O aluminum (K = 210 MPa, n = 0.13) is forged from a thickness of 30 mm to a thickness of 20 mm with a long die with a width of 75 mm. The coefficient of friction for the die/workpiece interface is 0.25. Calculate the maximum die pressure and required forging force.arrow_forwardA cup of 5o mm diameter and 20 mm height is to be produced by drawing from a 1.5 mm thick sheet metal. What is the maximum drawing force ? If ultimate tensile strength of metal is 650 MPa.arrow_forward
- A compound die will be used to blank and punch a large washer out of 6061ST aluminum alloy sheet stock 4.50 mm thick. The outside diameter of the washer is 60.0 mm and the inside diameter is 25.0 mm. Determine the punch and die sizes for the blanking operation. Determine the force required to perform the blanking and punching operation, assuming that the punches are staggered so that punching occurs first, then blanking. The aluminum sheet metal has a tensile strength = 310 MPa. Consider a clearance allowance value of 0.060.arrow_forward4) Make a summary of the types of defects found in sheet-metal forming processes, and include brief comments on the reason(s) for each defect.arrow_forwardA solid cylindrical slug made of 304 stainless steel is 150 mm in diameter and 100 mm high. It is reduced in height by 50% at room temperature by opendie forging with flat dies. Assuming that the coefficient of friction is 0.2 and the flow stress of this material is 1000 MPa, calculate the forging force at the end of the stroke. Manufacturing processesarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Basic Fabrication Techniques; Author: Weld.com;https://www.youtube.com/watch?v=3OW7iRnC8Ck;License: Standard Youtube License