Manufacturing Engineering & Technology
7th Edition
ISBN: 9780133128741
Author: Serope Kalpakjian, Steven Schmid
Publisher: Prentice Hall
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 16, Problem 45QTP
Section 16.5 states that the k values in bend allowance depend on the relative magnitudes of R and T. Explain why this relationship exists.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Question 2. It is reduced to 80 mm with forging by stacking a part with a height of 120 mm and a
diameter of 75 mm. The friction coefficient between the workpiece and the mold is 0.13. The flow
curve of the workpiece is defined by a strength coefficient of 165 MPa and a ping-top of
0.24. Calculate the force during the process at the moments given below and obtain the
force-workpiece height graph
(1) as soon as it reaches the flow point (flow unit shape change = 0.002),
(2) height h = 115 mm,
(3) height h = 110 mm,
(4) height h = 105 mm,
(5) height h = 100 mm,
(6) height h = 95 mm,
(7) height h = 90 mm,
(8) height h = 85 mm,
(9) height h = 80 mm,
....
10. A bar of 30 cm diameter is subjected to a pull of 200 kN. The measured extension on gauge length of 3.50 m is 5 cm and change in diameter is 2 mm. Calculate: (i) Young's Modulus, (ii) Poisson's Ratio (iii) Bulk Modulus and (iv) Shear Modulus.
Chapter 16 Solutions
Manufacturing Engineering & Technology
Ch. 16 - How does sheet-metal forming differ from rolling,...Ch. 16 - What causes burrs? How can they be reduced or...Ch. 16 - Prob. 3RQCh. 16 - Describe the difference between compound,...Ch. 16 - Describe the characteristics of sheet metals that...Ch. 16 - Describe the features of forming-limit diagrams...Ch. 16 - List the properties of materials that influence...Ch. 16 - Give one specific application for each of the...Ch. 16 - Why do tubes buckle when bent? What is the effect...Ch. 16 - Define normal anisotropy, and explain why it is...
Ch. 16 - Describe earing and why it occurs.Ch. 16 - What are the advantages of rubber forming? Which...Ch. 16 - Explain the difference between deep drawing and...Ch. 16 - How is roll forming fundamentally different from...Ch. 16 - What is nesting? What is its significance?Ch. 16 - Describe the differences between compound,...Ch. 16 - What is microforming?Ch. 16 - Explain the advantages of superplastic forming.Ch. 16 - What is hot stamping? For what materials is it...Ch. 16 - What is springback? What is negative springback?Ch. 16 - Explain the differences that you have observed...Ch. 16 - Take any three topics from Chapter 2, and, with...Ch. 16 - Do the same as for Problem 16.22, but for Chapter...Ch. 16 - Identify the material and process variables that...Ch. 16 - Explain why springback in bending depends on yield...Ch. 16 - Explain why cupping tests may not predict well the...Ch. 16 - Identify the factors that influence the...Ch. 16 - Why are the beads in Fig. 16.36b placed in those...Ch. 16 - A general rule for dimensional relationships for...Ch. 16 - Section 16.2 stated that the punch stripping force...Ch. 16 - Is it possible to have ironing take place in an...Ch. 16 - Note the roughness of the periphery of the flanged...Ch. 16 - What recommendations would you make in order to...Ch. 16 - It has been stated that the quality of the sheared...Ch. 16 - Give several specific examples from this chapter...Ch. 16 - As you can see, some of the operations described...Ch. 16 - Through changes in clamping or die design, it is...Ch. 16 - How would you produce the part shown in Fig....Ch. 16 - It has been stated that the thicker the sheet...Ch. 16 - Prob. 41QTPCh. 16 - Calculate the value of R in Problem 16.41. Will...Ch. 16 - Estimate the limiting drawing ratio for the...Ch. 16 - Using Eq. (16.15) and the K value for TNT, plot...Ch. 16 - Section 16.5 states that the k values in bend...Ch. 16 - For explosive forming, calculate the peak pressure...Ch. 16 - Measure the respective areas of the solid outlines...Ch. 16 - Plot Eq. (16.6) in terms of the elastic modulus,...Ch. 16 - What is the minimum bend radius for a 1.0-mm-thick...Ch. 16 - Survey the technical literature and explain the...Ch. 16 - Using the data in Table 16.3 and referring to Eq....Ch. 16 - What is the force required to punch a square hole...Ch. 16 - In Case Study 16.2, it was stated that the reason...Ch. 16 - A cup is being drawn from a sheet metal that has a...Ch. 16 - Prob. 55QTPCh. 16 - Figure P16.57 shows a parabolic profile that will...Ch. 16 - Prob. 59SDPCh. 16 - Consider several shapes to be blanked from a large...Ch. 16 - Prob. 61SDPCh. 16 - Many axisymmetric missile bodies are made by...Ch. 16 - Metal cans are either two-piece (in which the...Ch. 16 - The design shown in Fig. P16.65 is proposed for a...Ch. 16 - Suggest consumer-product designs that could...Ch. 16 - How would you produce the part shown in Fig. 16.44...Ch. 16 - Using a ball-peen hammer, strike the surface of...Ch. 16 - Inspect a common paper punch and observe the shape...Ch. 16 - Obtain an aluminum beverage can and slit it in...Ch. 16 - Prob. 71SDPCh. 16 - Prob. 73SDPCh. 16 - On the basis of experiments, it has been suggested...Ch. 16 - Design a box that will contain a 4-in. 6-in. ...Ch. 16 - Repeat Problem 16.77, but design the box from a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A piece with a height of 120 mm and a diameter of 75 mm can be increased to 80 mm in height by pile-forging.is reduced. The coefficient of friction between the workpiece and the mold is 0.13. Flow curve of the workpiece, 165It is defined by a strength coefficient of MPa and a hardening exponent of 0.24. force during operationCalculate at the moments given below and obtain the force-workpiece height graph(1) as soon as it reaches the yield point (yield strain = 0.002),(2) height h = 115 mm,(3) height h = 110 mm,(4) height h = 105mm,(5) height h = 100mm,(6) height h=95mm,(7) height h = 90 mm,(8) height h = 85mm,(9) height h = 80 mm,arrow_forwardExplain what is the effective-slenderness ratio?arrow_forwardQ1: How do your results for μs and μk compare to literature values for dry metal on plastic? Cite what you compared to. Do they agree with the literature within error? If not, discuss any systematics that could have contributed to the discrepancy. Q2: Is the force of static friction constant as the incline rises? Explain your answer. My Us value is 0.4452, and Uk value is 0.33arrow_forward
- A compound die will be used to blank and punch a large washer out of 6061ST aluminum alloy sheet stock 4.50 mm thick. The outside diameter of the washer is 60.0 mm and the inside diameter is 25.0 mm. Determine the punch and die sizes for the blanking operation. Determine the force required to perform the blanking and punching operation, assuming that the punches are staggered so that punching occurs first, then blanking. The aluminum sheet metal has a tensile strength = 310 MPa. Consider a clearance allowance value of 0.060.arrow_forwardHi, the diameter is 10 mm in my problem, not 15 mm.arrow_forwardIn a rolling mill, the rollers can exert a pressure of 219 MPa on the sheet being rolled. If the friction coefficient between the roller and the sheet metal is 0.35 and the flow stress of the steel being rolled is 120 MPa, what diameter rolls would reduce the thickness of 2mm thick sheet by 25% in a single pass?arrow_forward
- 6.100 A 0.25-m-wide billet of 5052-O aluminum (K = 210 MPa, n = 0.13) is forged from a thickness of 30 mm to a thickness of 20 mm with a long die with a width of 75 mm. The coefficient of friction for the die/workpiece interface is 0.25. Calculate the maximum die pressure and required forging force.arrow_forwardCalculate the bending force required for a C50 steel I.5 mm sheet of width I m to be bent in a wiping die. The die radius used is 3 mm. C50 steel, ultimate tensile strength can be taken as 800 MPa.arrow_forwardA mechanical press is powered by a 23-kW motor and operates at 40 strokes per minute. It uses a flywheel, so that the crankshaft speed does not vary appreciably during the stroke. If the stroke is 150 mm, what is the maxumum const.ant force rhat can be exerted over the entire stroke length?arrow_forward
- 4)arrow_forward4. How we can measure shear modulus?arrow_forwardA compound die is used to blank and punch a large washer out of 6061ST aluminum alloy sheet stock 3.2 mm thick. The outside diameter of the washer is 25.0 mm, and the inside diameter is 12.0 mm. Determine (a) the punch and die sizes for the blanking and punching operations, (b) the force required to perform the blanking and punching operation under the following conditions: (a) blanking and punching occur simultaneously and (b) the punches are staggered so that punching occurs first, then blanking. The aluminum has a tensile strength = 350 MPa.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Relationship Between Elastic Constants and Connecting Equations; Author: Engineers Academy;https://www.youtube.com/watch?v=whW5PnM7Pug;License: Standard Youtube License