Manufacturing Engineering & Technology
7th Edition
ISBN: 9780133128741
Author: Serope Kalpakjian, Steven Schmid
Publisher: Prentice Hall
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 16, Problem 35QLP
Give several specific examples from this chapter in which friction is desirable and several in which it is not desirable.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
With suitable sketches of the relationship of friction force and applied load, briefly explain the concept of friction force.
Explain (i) Angle of repose with a Neat diagram
(ii) Impending Motion and Limiting Friction
List manufacturing operations in which high friction is desirable and those in which low friction is desirable,
Chapter 16 Solutions
Manufacturing Engineering & Technology
Ch. 16 - How does sheet-metal forming differ from rolling,...Ch. 16 - What causes burrs? How can they be reduced or...Ch. 16 - Prob. 3RQCh. 16 - Describe the difference between compound,...Ch. 16 - Describe the characteristics of sheet metals that...Ch. 16 - Describe the features of forming-limit diagrams...Ch. 16 - List the properties of materials that influence...Ch. 16 - Give one specific application for each of the...Ch. 16 - Why do tubes buckle when bent? What is the effect...Ch. 16 - Define normal anisotropy, and explain why it is...
Ch. 16 - Describe earing and why it occurs.Ch. 16 - What are the advantages of rubber forming? Which...Ch. 16 - Explain the difference between deep drawing and...Ch. 16 - How is roll forming fundamentally different from...Ch. 16 - What is nesting? What is its significance?Ch. 16 - Describe the differences between compound,...Ch. 16 - What is microforming?Ch. 16 - Explain the advantages of superplastic forming.Ch. 16 - What is hot stamping? For what materials is it...Ch. 16 - What is springback? What is negative springback?Ch. 16 - Explain the differences that you have observed...Ch. 16 - Take any three topics from Chapter 2, and, with...Ch. 16 - Do the same as for Problem 16.22, but for Chapter...Ch. 16 - Identify the material and process variables that...Ch. 16 - Explain why springback in bending depends on yield...Ch. 16 - Explain why cupping tests may not predict well the...Ch. 16 - Identify the factors that influence the...Ch. 16 - Why are the beads in Fig. 16.36b placed in those...Ch. 16 - A general rule for dimensional relationships for...Ch. 16 - Section 16.2 stated that the punch stripping force...Ch. 16 - Is it possible to have ironing take place in an...Ch. 16 - Note the roughness of the periphery of the flanged...Ch. 16 - What recommendations would you make in order to...Ch. 16 - It has been stated that the quality of the sheared...Ch. 16 - Give several specific examples from this chapter...Ch. 16 - As you can see, some of the operations described...Ch. 16 - Through changes in clamping or die design, it is...Ch. 16 - How would you produce the part shown in Fig....Ch. 16 - It has been stated that the thicker the sheet...Ch. 16 - Prob. 41QTPCh. 16 - Calculate the value of R in Problem 16.41. Will...Ch. 16 - Estimate the limiting drawing ratio for the...Ch. 16 - Using Eq. (16.15) and the K value for TNT, plot...Ch. 16 - Section 16.5 states that the k values in bend...Ch. 16 - For explosive forming, calculate the peak pressure...Ch. 16 - Measure the respective areas of the solid outlines...Ch. 16 - Plot Eq. (16.6) in terms of the elastic modulus,...Ch. 16 - What is the minimum bend radius for a 1.0-mm-thick...Ch. 16 - Survey the technical literature and explain the...Ch. 16 - Using the data in Table 16.3 and referring to Eq....Ch. 16 - What is the force required to punch a square hole...Ch. 16 - In Case Study 16.2, it was stated that the reason...Ch. 16 - A cup is being drawn from a sheet metal that has a...Ch. 16 - Prob. 55QTPCh. 16 - Figure P16.57 shows a parabolic profile that will...Ch. 16 - Prob. 59SDPCh. 16 - Consider several shapes to be blanked from a large...Ch. 16 - Prob. 61SDPCh. 16 - Many axisymmetric missile bodies are made by...Ch. 16 - Metal cans are either two-piece (in which the...Ch. 16 - The design shown in Fig. P16.65 is proposed for a...Ch. 16 - Suggest consumer-product designs that could...Ch. 16 - How would you produce the part shown in Fig. 16.44...Ch. 16 - Using a ball-peen hammer, strike the surface of...Ch. 16 - Inspect a common paper punch and observe the shape...Ch. 16 - Obtain an aluminum beverage can and slit it in...Ch. 16 - Prob. 71SDPCh. 16 - Prob. 73SDPCh. 16 - On the basis of experiments, it has been suggested...Ch. 16 - Design a box that will contain a 4-in. 6-in. ...Ch. 16 - Repeat Problem 16.77, but design the box from a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A hard metal ball of 10mm diameter is slid across a soft metal surface and produces a groove of3mm width. The interfacial shear strength is one-tenth of the bulk shear strength of the softermetal. For an experimentally measured coefficient of friction of 0.45 for the contact, calculatethe percentage contribution of adhesive and ploughing components to the total coefficient offriction.arrow_forward2) Drawing: A round rod of annealed 302 stainless steel (K = 1300 MPa and n = 0.3) is being drawn from a diameter of 15 mm to a diameter of 12 mm at a speed 0.25 m/s, using a semidie angle of 8º. a. Calculate the percentage reduction, the applied force due to ideal deformation, friction, and inhomogeneous deformation. Assume coefficient of friction of 0.1. b. Calculate the required power, process efficiency, and the die pressure at the exit.arrow_forwardA 42mm thick low carbon steel plate is reduced to 34mm in one rolling pass. At the same time that the thickness is reduced, the plate is widened by 4%. The elastic limit of the steel plate is 174MPa and its resistance is 290MPa. The input speed of the plate is 15m/min. The radius of the cylinder is 52.8mm and the rotation speed is 49 revolutions per minute. Determine: a) The minimum coefficient of friction that will make this rolling operation possible. b) The output speed of the plate c) Slide forwardarrow_forward
- A cylindrical workpiece of 100mm diameter and 150mm in height (Fig. 1) is upset (open die forged) at 1200° C to 100mm height disk (Fig. 2). Material of the workpiece is low carbon steel. A graphite lubricant reduces the friction to u=0.25. A press with 2-m/sec speeds is used to make this part. At 1200° C the material has the values for its C=48MPA and m=0.08 parameters Fig. 1 Height=150mm, Diameter=100mm Fig. 2 Height = 100mm, Diamete = ? mm (a) (b) (c) Determine the final diameter of the disk (see Fig. 2) Determine the true strain rate at the end of process. Calculate the flow stress at the end of the stroke.arrow_forwardQ2Aarrow_forwardWhat is Limiting Friction? Describe it with some real case example.arrow_forward
- Question #1) What is friction.explain its types briefly.arrow_forwardIn a rolling operation using a roll of diameter 1.5 m, if a 35 mm thick plate cannot be reduced to less than 12 mm in a single pass then calculate the coefficient of friction btween the rolls and the plate.arrow_forward7. A strip of annealed low-carbon steel (K = 528 MPa, n = 0.25) is rolled from its initial dimensions (210 mm wide and 13 mm thick) to a thickness of 7 mm. The rollers have a radius of 250 mm, the roller rotates at 200 rpm, and u = 0.1. Compare this high frictional force and power with the low frictional (u = 0) forces and power. a. Estimate the roll force and power required for this process.arrow_forward
- List and describe two (2) situations in which conceptual (qualitative) and numerical descriptions of friction are relevant in Mechanical Engineering (Pls describe the situations properly and clearly)arrow_forwardHellp with thisarrow_forwardA 1-in diameter hole is to be punched through a 1/8-in thick annealed titanium-alloy Ti-6Al-4V (grade 5, annealed) sheet at room temperature. Estimate the force required for the punching operation. Show your work and list any values you reference/use. Hint: Use the equation F=T*L*Shear Strengtharrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Introduction To Engg Mechanics - Newton's Laws of motion - Kinetics - Kinematics; Author: EzEd Channel;https://www.youtube.com/watch?v=ksmsp9OzAsI;License: Standard YouTube License, CC-BY