Manufacturing Engineering & Technology
7th Edition
ISBN: 9780133128741
Author: Serope Kalpakjian, Steven Schmid
Publisher: Prentice Hall
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 16, Problem 66SDP
Suggest consumer-product designs that could utilize honeycomb structures. For example, an elevator can use a honeycomb laminate as a stiff and lightweight floor material.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Compare compression and injection molding for speed, cost per part, investment cost, and flexibility in types of material that can be handled?
Is it preferable to have a larger or smaller Weibull modulus m for a structural product?
4. A steel rotor of a gas turbine of 400mm outside diameter, 150mm inside diameter and 25mm
thick is shrunk onto a solid steel shaft. At its service speed of 3000rev/min the radial stress on
the outside of the rotor is 1.45MPA. Determine the shrinkage allowance required in order to
avoid failure, if the design stress limit of the material is 200MPA.
For the material assume a Young's Modulus, Poisson Ratio and density of 210GPA, 0.3 and
7850k g/m3
respectively.
Chapter 16 Solutions
Manufacturing Engineering & Technology
Ch. 16 - How does sheet-metal forming differ from rolling,...Ch. 16 - What causes burrs? How can they be reduced or...Ch. 16 - Prob. 3RQCh. 16 - Describe the difference between compound,...Ch. 16 - Describe the characteristics of sheet metals that...Ch. 16 - Describe the features of forming-limit diagrams...Ch. 16 - List the properties of materials that influence...Ch. 16 - Give one specific application for each of the...Ch. 16 - Why do tubes buckle when bent? What is the effect...Ch. 16 - Define normal anisotropy, and explain why it is...
Ch. 16 - Describe earing and why it occurs.Ch. 16 - What are the advantages of rubber forming? Which...Ch. 16 - Explain the difference between deep drawing and...Ch. 16 - How is roll forming fundamentally different from...Ch. 16 - What is nesting? What is its significance?Ch. 16 - Describe the differences between compound,...Ch. 16 - What is microforming?Ch. 16 - Explain the advantages of superplastic forming.Ch. 16 - What is hot stamping? For what materials is it...Ch. 16 - What is springback? What is negative springback?Ch. 16 - Explain the differences that you have observed...Ch. 16 - Take any three topics from Chapter 2, and, with...Ch. 16 - Do the same as for Problem 16.22, but for Chapter...Ch. 16 - Identify the material and process variables that...Ch. 16 - Explain why springback in bending depends on yield...Ch. 16 - Explain why cupping tests may not predict well the...Ch. 16 - Identify the factors that influence the...Ch. 16 - Why are the beads in Fig. 16.36b placed in those...Ch. 16 - A general rule for dimensional relationships for...Ch. 16 - Section 16.2 stated that the punch stripping force...Ch. 16 - Is it possible to have ironing take place in an...Ch. 16 - Note the roughness of the periphery of the flanged...Ch. 16 - What recommendations would you make in order to...Ch. 16 - It has been stated that the quality of the sheared...Ch. 16 - Give several specific examples from this chapter...Ch. 16 - As you can see, some of the operations described...Ch. 16 - Through changes in clamping or die design, it is...Ch. 16 - How would you produce the part shown in Fig....Ch. 16 - It has been stated that the thicker the sheet...Ch. 16 - Prob. 41QTPCh. 16 - Calculate the value of R in Problem 16.41. Will...Ch. 16 - Estimate the limiting drawing ratio for the...Ch. 16 - Using Eq. (16.15) and the K value for TNT, plot...Ch. 16 - Section 16.5 states that the k values in bend...Ch. 16 - For explosive forming, calculate the peak pressure...Ch. 16 - Measure the respective areas of the solid outlines...Ch. 16 - Plot Eq. (16.6) in terms of the elastic modulus,...Ch. 16 - What is the minimum bend radius for a 1.0-mm-thick...Ch. 16 - Survey the technical literature and explain the...Ch. 16 - Using the data in Table 16.3 and referring to Eq....Ch. 16 - What is the force required to punch a square hole...Ch. 16 - In Case Study 16.2, it was stated that the reason...Ch. 16 - A cup is being drawn from a sheet metal that has a...Ch. 16 - Prob. 55QTPCh. 16 - Figure P16.57 shows a parabolic profile that will...Ch. 16 - Prob. 59SDPCh. 16 - Consider several shapes to be blanked from a large...Ch. 16 - Prob. 61SDPCh. 16 - Many axisymmetric missile bodies are made by...Ch. 16 - Metal cans are either two-piece (in which the...Ch. 16 - The design shown in Fig. P16.65 is proposed for a...Ch. 16 - Suggest consumer-product designs that could...Ch. 16 - How would you produce the part shown in Fig. 16.44...Ch. 16 - Using a ball-peen hammer, strike the surface of...Ch. 16 - Inspect a common paper punch and observe the shape...Ch. 16 - Obtain an aluminum beverage can and slit it in...Ch. 16 - Prob. 71SDPCh. 16 - Prob. 73SDPCh. 16 - On the basis of experiments, it has been suggested...Ch. 16 - Design a box that will contain a 4-in. 6-in. ...Ch. 16 - Repeat Problem 16.77, but design the box from a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- (b) design guideline. Using the material selection chart provided (Figure 1) and appropriate (i) Select suitable materials for the skateboard deck as a panel under the following conditions: (1) minimum strength is 100 MPa, (2) a high strength per unit mass and (3) the design guideline passing through centre of the wood bubble. Show your design constraint lines on the graph provided and list the selected materials.arrow_forwardanswer fast with summarized solutionarrow_forwardQ1arrow_forward
- Explain what is the effective-slenderness ratio?arrow_forwardcan you please step by step to understand that I did not get it ?????arrow_forwardThe figure shown below (Fig. 2) is a schematic representation of a scissor jack in two different positions. The maximum load that this mechanism must withstand is 800 kg. 4 are proposed different materials to make the jack arms and spindle. The mechanical properties and some Physical characteristics of each material are shown in Table 1. a) Based on the properties of each material and the cross section of the arms and the screw, Propose what would be the most suitable material for its manufacture. The length of each arm is 150 mm. The stress on the arms and the spindle must not exceed the yield strength of the material selected for neither of the two analysis positions. b) Using the mechanical properties of the material you selected, calculate the change in dimension that the arms and the spindle of the jack were tested for the two analysis positions. The length of the spindle is 280 mm.arrow_forward
- Are the thin-walled tubes of noncircular cross-section often used to constructlight-weight frameworks such as those used in aircraft?arrow_forwardAn extruder has barrel diameter and length of 150 mm and 3.1 m, respectively. The screw rotational speed = 55 rev/min, channel depth = 8 mm, and flight angle = 18°. The plastic melt has a shear viscosity = 175 Pa-s. Determine: (a) the extruder characteristic, (b) the shape factor Ks for a circular die opening with diameter = 4.0 mm and length = 15 mm, and (c) the operating point (Q and p).arrow_forward8. Design Problem: A material is needed to support a hanging sculpture with an overall tensile load of 800 N. It is important that the material not undergo any permanent deformation under this load and must have minimum volume/diameter. Using a circular rod, design structural components using your data for each of the three materials. Which material would you choose for the application and why? If the requirement was minimum weight, rather than minimum volume, which material would you use? Show sample calculations.arrow_forward
- A thin steel disk of an oil separator of 100mm outside diameter is shrunk onto a solid steel shaft of 20mm diameter. The system is to be designed to make sure the disc does not become loose at speeds lower than 100000rev/min. Determine the shrinkage allowance required in order to avoid separation disc and shaft, at a speed of 100000rev/min. For the material assume a Young's Modulus, Poisson Ratio and density of 210GPa, 0.3 and 7850kg/m³ respectively.arrow_forwardisufficient amount of pure copper is to be heated for casting a large plate in an open mold. The plate has dimensions: length = 20 in, width 10 in, and thickness 3 in. Compute the amount of heat that must be added to the metal to heat it to a temperature of 2150°F for pouring. Assume that the amount of metal heated will be 10% more than what is needed to fill the mold cavity. Properties of the metal are: density = 0.324 lbm/in3, melting point = 1981°F, specific heat of the metal = 0.093 Btu/lbm-F in the solid state and 0.090 Btu/lbm-F in the liquid state, and heat of fusion = 80 Btu/lbmarrow_forwardThe height of the down sprue is 175 mm and its CS are at the base is 200 mm² The CS area of the horizontal runner is also 200 mm² Assuming no losses, indicate the correct choice for the time (second) required to fill a mould cavity of volume 106 mm³ (Use g=10 m/s^ 2 )arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Relationship Between Elastic Constants and Connecting Equations; Author: Engineers Academy;https://www.youtube.com/watch?v=whW5PnM7Pug;License: Standard Youtube License