Manufacturing Engineering & Technology
7th Edition
ISBN: 9780133128741
Author: Serope Kalpakjian, Steven Schmid
Publisher: Prentice Hall
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 16, Problem 46QTP
For explosive forming, calculate the peak pressure in water for 0.25 lb of TNT at a standoff distance of 4 ft. Comment on whether or not the magnitude of this pressure is sufficiently high to form sheet metals.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
1. A component is designed to be hot forged in an impression die. The projected area of the product is 5800 mm2. During the forging process flashing is formed so that the area including the flash will be 8900 mm2. The part geometry is considered to be simple and the heated work material yields at 92 MPa. Calculate the maximum force required to perform the operation.
2. What are the advantages and disadvantages to forge a product through the open forging process, rather than to machine it from the same material?
A 10 mm thick plate is rolled to 7 mm thick in a rolling mill using 1000 mm diameter rigid rolls. The neutral point is located at an angle of 0.3 times the bite angle from the exit. What will be the thickness of the plate at the neutral point.
Write a detailed note on "Hydrostatic Extrusion". Also draw diagrams to explain the process of hydrostatic extrusion.
Chapter 16 Solutions
Manufacturing Engineering & Technology
Ch. 16 - How does sheet-metal forming differ from rolling,...Ch. 16 - What causes burrs? How can they be reduced or...Ch. 16 - Prob. 3RQCh. 16 - Describe the difference between compound,...Ch. 16 - Describe the characteristics of sheet metals that...Ch. 16 - Describe the features of forming-limit diagrams...Ch. 16 - List the properties of materials that influence...Ch. 16 - Give one specific application for each of the...Ch. 16 - Why do tubes buckle when bent? What is the effect...Ch. 16 - Define normal anisotropy, and explain why it is...
Ch. 16 - Describe earing and why it occurs.Ch. 16 - What are the advantages of rubber forming? Which...Ch. 16 - Explain the difference between deep drawing and...Ch. 16 - How is roll forming fundamentally different from...Ch. 16 - What is nesting? What is its significance?Ch. 16 - Describe the differences between compound,...Ch. 16 - What is microforming?Ch. 16 - Explain the advantages of superplastic forming.Ch. 16 - What is hot stamping? For what materials is it...Ch. 16 - What is springback? What is negative springback?Ch. 16 - Explain the differences that you have observed...Ch. 16 - Take any three topics from Chapter 2, and, with...Ch. 16 - Do the same as for Problem 16.22, but for Chapter...Ch. 16 - Identify the material and process variables that...Ch. 16 - Explain why springback in bending depends on yield...Ch. 16 - Explain why cupping tests may not predict well the...Ch. 16 - Identify the factors that influence the...Ch. 16 - Why are the beads in Fig. 16.36b placed in those...Ch. 16 - A general rule for dimensional relationships for...Ch. 16 - Section 16.2 stated that the punch stripping force...Ch. 16 - Is it possible to have ironing take place in an...Ch. 16 - Note the roughness of the periphery of the flanged...Ch. 16 - What recommendations would you make in order to...Ch. 16 - It has been stated that the quality of the sheared...Ch. 16 - Give several specific examples from this chapter...Ch. 16 - As you can see, some of the operations described...Ch. 16 - Through changes in clamping or die design, it is...Ch. 16 - How would you produce the part shown in Fig....Ch. 16 - It has been stated that the thicker the sheet...Ch. 16 - Prob. 41QTPCh. 16 - Calculate the value of R in Problem 16.41. Will...Ch. 16 - Estimate the limiting drawing ratio for the...Ch. 16 - Using Eq. (16.15) and the K value for TNT, plot...Ch. 16 - Section 16.5 states that the k values in bend...Ch. 16 - For explosive forming, calculate the peak pressure...Ch. 16 - Measure the respective areas of the solid outlines...Ch. 16 - Plot Eq. (16.6) in terms of the elastic modulus,...Ch. 16 - What is the minimum bend radius for a 1.0-mm-thick...Ch. 16 - Survey the technical literature and explain the...Ch. 16 - Using the data in Table 16.3 and referring to Eq....Ch. 16 - What is the force required to punch a square hole...Ch. 16 - In Case Study 16.2, it was stated that the reason...Ch. 16 - A cup is being drawn from a sheet metal that has a...Ch. 16 - Prob. 55QTPCh. 16 - Figure P16.57 shows a parabolic profile that will...Ch. 16 - Prob. 59SDPCh. 16 - Consider several shapes to be blanked from a large...Ch. 16 - Prob. 61SDPCh. 16 - Many axisymmetric missile bodies are made by...Ch. 16 - Metal cans are either two-piece (in which the...Ch. 16 - The design shown in Fig. P16.65 is proposed for a...Ch. 16 - Suggest consumer-product designs that could...Ch. 16 - How would you produce the part shown in Fig. 16.44...Ch. 16 - Using a ball-peen hammer, strike the surface of...Ch. 16 - Inspect a common paper punch and observe the shape...Ch. 16 - Obtain an aluminum beverage can and slit it in...Ch. 16 - Prob. 71SDPCh. 16 - Prob. 73SDPCh. 16 - On the basis of experiments, it has been suggested...Ch. 16 - Design a box that will contain a 4-in. 6-in. ...Ch. 16 - Repeat Problem 16.77, but design the box from a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- To what thickness can a solid cylinder of 6061-0 aluminium, that is 20 mm in diameter and 50 mm high, be forged in a press that can generate 350 kN? Assume frictionless conditions occur during the forging process.arrow_forwardExplain briefly the relationship between the load-stroke in open die forging as illustrated in the figures bellow. Take in consideration the effect of coefficient of friction.arrow_forwardA compound die will be used to blank and punch a large washer out of 6061ST aluminum alloy sheet stock 4.50 mm thick. The outside diameter of the washer is 60.0 mm and the inside diameter is 25.0 mm. Determine the punch and die sizes for the blanking operation. Determine the force required to perform the blanking and punching operation, assuming that the punches are staggered so that punching occurs first, then blanking. The aluminum sheet metal has a tensile strength = 310 MPa. Consider a clearance allowance value of 0.060.arrow_forward
- A small connecting rod is forged from AISI 1015 steel at 1200oC. Calculate the forging force in a mechanical press at a speed of 200 mm / s when the die comes into contact with the part. The volume of the connecting rod is estimated to be 28680 mm3, and 20% of the starting material is expected to burn off as flash (flash). In the final form the projected area is 3500 mm2 without flash. The width of the flash is 7.6mm around 300mm in circumference.arrow_forwardA compound die is used to blank and punch a large washer out of 6061ST aluminum alloy sheet stock 3.2 mm thick. The outside diameter of the washer is 25.0 mm, and the inside diameter is 12.0 mm. Determine (a) the punch and die sizes for the blanking and punching operations, (b) the force required to perform the blanking and punching operation under the following conditions: (a) blanking and punching occur simultaneously and (b) the punches are staggered so that punching occurs first, then blanking. The aluminum has a tensile strength = 350 MPa.arrow_forwardA solid cylindrical slug made of 304 stainless steel is 150 mm in diameter and 100 mm high. It is reduced in height by 50% at room temperature by opendie forging with flat dies. Assuming that the coefficient of friction is 0.2 and the flow stress of this material is 1000 MPa, calculate the forging force at the end of the stroke. Manufacturing processesarrow_forward
- How can you tell if a metal part is forged or cast. Describe the properties you would have investigated.arrow_forwardA compound die will be used to blank and punch a large rectangle (90x150mm blank dimensions) out of 6061ST aluminum alloy sheet stock 3.5 mm thick. The diameter of inside hole is 25 mm. The aluminum sheet metal has a tensile strength 310 MPa. Determine the minimum tonnage press (force) to perform the blanking and punching operation (1) assume that blanking and punching occur simultaneously and (2) assume that punching occurs first, then blanking, Take: Ac-0.06arrow_forwardIn open die forging a disc of diameter 125 mm and height 60mm is compressed without any barreling effect. The final diameter of disc is 250 mm. Calculate the true strain.arrow_forward
- Calculate the percent cold reduction after cold rolling 0.050-in.-thick stainless steel sheet to 0.029 in.arrow_forwardA billet 100 mm long and 40 mm diameter is to be extruded in a direct extrusion with final diameter of product 32 mm. The semi die angle is 60°. The work metal has a strength coefficient 500 Map, and strain hardening 0.2 use the Johnson formula with a=0.8 and b=1.45 to estimate the extrusion strain. Determine the pressure applied to the end of the billet as the ram moves forward.arrow_forwardDescribe four (4) common forging defects.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Types of Manufacturing Process | Manufacturing Processes; Author: Magic Marks;https://www.youtube.com/watch?v=koULXptaBTs;License: Standard Youtube License