Manufacturing Engineering & Technology
7th Edition
ISBN: 9780133128741
Author: Serope Kalpakjian, Steven Schmid
Publisher: Prentice Hall
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 16, Problem 69SDP
Inspect a common paper punch and observe the shape of the punch tip. Compare it with those shown in Fig. 16.10 and comment on your observations.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Consider the extrusion of a cylindrical billet, and compute the following.
Assume the starting billet to have a length of 0.3m and a diameter of 15cm. This is extruded into a cylindrical product that is 3cm in diameter and 7.5cm long. Neglecting the areas on the two ends, compute the ratio between the product surface area (wraparound cylinder) and the surface area of the starting billet. How would this ratio change if the product were a square with the same corss-sectional area as that of the 3cm diameter circle?
What is the difference between caulking and fullering? Explain with the help of neat sketches.
A round slug 10 mm in diameter and made of a metal with average flow stress 300 MPa is reduced to a final diameter of 7 mm by cold extrusion. Estimate the force on the punch.
Chapter 16 Solutions
Manufacturing Engineering & Technology
Ch. 16 - How does sheet-metal forming differ from rolling,...Ch. 16 - What causes burrs? How can they be reduced or...Ch. 16 - Prob. 3RQCh. 16 - Describe the difference between compound,...Ch. 16 - Describe the characteristics of sheet metals that...Ch. 16 - Describe the features of forming-limit diagrams...Ch. 16 - List the properties of materials that influence...Ch. 16 - Give one specific application for each of the...Ch. 16 - Why do tubes buckle when bent? What is the effect...Ch. 16 - Define normal anisotropy, and explain why it is...
Ch. 16 - Describe earing and why it occurs.Ch. 16 - What are the advantages of rubber forming? Which...Ch. 16 - Explain the difference between deep drawing and...Ch. 16 - How is roll forming fundamentally different from...Ch. 16 - What is nesting? What is its significance?Ch. 16 - Describe the differences between compound,...Ch. 16 - What is microforming?Ch. 16 - Explain the advantages of superplastic forming.Ch. 16 - What is hot stamping? For what materials is it...Ch. 16 - What is springback? What is negative springback?Ch. 16 - Explain the differences that you have observed...Ch. 16 - Take any three topics from Chapter 2, and, with...Ch. 16 - Do the same as for Problem 16.22, but for Chapter...Ch. 16 - Identify the material and process variables that...Ch. 16 - Explain why springback in bending depends on yield...Ch. 16 - Explain why cupping tests may not predict well the...Ch. 16 - Identify the factors that influence the...Ch. 16 - Why are the beads in Fig. 16.36b placed in those...Ch. 16 - A general rule for dimensional relationships for...Ch. 16 - Section 16.2 stated that the punch stripping force...Ch. 16 - Is it possible to have ironing take place in an...Ch. 16 - Note the roughness of the periphery of the flanged...Ch. 16 - What recommendations would you make in order to...Ch. 16 - It has been stated that the quality of the sheared...Ch. 16 - Give several specific examples from this chapter...Ch. 16 - As you can see, some of the operations described...Ch. 16 - Through changes in clamping or die design, it is...Ch. 16 - How would you produce the part shown in Fig....Ch. 16 - It has been stated that the thicker the sheet...Ch. 16 - Prob. 41QTPCh. 16 - Calculate the value of R in Problem 16.41. Will...Ch. 16 - Estimate the limiting drawing ratio for the...Ch. 16 - Using Eq. (16.15) and the K value for TNT, plot...Ch. 16 - Section 16.5 states that the k values in bend...Ch. 16 - For explosive forming, calculate the peak pressure...Ch. 16 - Measure the respective areas of the solid outlines...Ch. 16 - Plot Eq. (16.6) in terms of the elastic modulus,...Ch. 16 - What is the minimum bend radius for a 1.0-mm-thick...Ch. 16 - Survey the technical literature and explain the...Ch. 16 - Using the data in Table 16.3 and referring to Eq....Ch. 16 - What is the force required to punch a square hole...Ch. 16 - In Case Study 16.2, it was stated that the reason...Ch. 16 - A cup is being drawn from a sheet metal that has a...Ch. 16 - Prob. 55QTPCh. 16 - Figure P16.57 shows a parabolic profile that will...Ch. 16 - Prob. 59SDPCh. 16 - Consider several shapes to be blanked from a large...Ch. 16 - Prob. 61SDPCh. 16 - Many axisymmetric missile bodies are made by...Ch. 16 - Metal cans are either two-piece (in which the...Ch. 16 - The design shown in Fig. P16.65 is proposed for a...Ch. 16 - Suggest consumer-product designs that could...Ch. 16 - How would you produce the part shown in Fig. 16.44...Ch. 16 - Using a ball-peen hammer, strike the surface of...Ch. 16 - Inspect a common paper punch and observe the shape...Ch. 16 - Obtain an aluminum beverage can and slit it in...Ch. 16 - Prob. 71SDPCh. 16 - Prob. 73SDPCh. 16 - On the basis of experiments, it has been suggested...Ch. 16 - Design a box that will contain a 4-in. 6-in. ...Ch. 16 - Repeat Problem 16.77, but design the box from a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Explain the differences that you may observe between products made of sheet metals and those made by casting and forging.arrow_forwardExplain the open and closed mold forging processes with figures. Draw the force-stroke diagram in closed mold forging. Comment on the diagram.arrow_forwardIn a sheet metal forming press, the shape to be formed is hemispherical cup of radius 15 cm in 2mm thick mild steel sheet. The force required to deform sheet is 8 kN. The forming hammer should approach job from a distance of 30 cm. The production rate required is 240 components/hr. Calculate and suggest the following specifications of the various hydraulic components used: a. Hydraulic cylinder (bore & length); b. Pump pressure and flow rate; c. Electric motor HP considering 75% pump efficiency; d. Reservoir size; and e. Size of pump inlet and discharge tubing.arrow_forward
- Consider the extrusion of a cylindrical billet. Assume the billet to have a length of 0.3m and a diameter of 0.15m. This is extruded into a cylindrical product that is 0.03m in diameter and 7.5m long (a reduction ratio of 25). Neglecting the areas on the two ends, compute the ratio between the product surface area (wraparound cylinder) and the surface area of the starting billet. How would this ratio change if the product were a square with the same cross-sectional area as that of the 0.03m diameter circle?arrow_forward• In a sheet metal forming press the shape to be formed is hemispherical cup of radius 15 cm in 2mm thick mild steel sheet. The force required to deform sheet is 8 kN. The forming hammer should approach job from a distance of 30 cm. The production rate required is 240 components/hr. Calculate and suggest the following specifications of the various hydraulic components used: a) Hydraulic cylinder (bore & length) b) Pump pressure and flow rate c) Electric motor HP considering 75% pump efficiency d) Reservoir size e) Size of pump inlet and discharge tubingarrow_forwardA cup of internal diameter 80 mm and height 45 mm is to be drawn from a sheet metal 2 mm thick. Four blank sizes are available for the operation. You want to ensure the blank is large enough to make the required cup height while minimizing the material waste. Calculate the starting blank diameter for this operation?arrow_forward
- please answer to both of these parts of the question, thanks (a) Explain the advantage of corner radii of punch and die in Sheet Metal Drawing Process. (b) Explain the disadvantages of Tube Drawing process in which mandrel is not used.arrow_forwardA typical plastic shopping bag made by blown film has a lateral dimension (width) of 550 mm. Assume the tube is expended from 1.5 to 2.5 times the extrusion die diameter. Calculate the extrusion die diameter size.arrow_forwardA blanking operation is to be performed on 2.0 mm thick cold-rolled steel (half hard). The part is circular with diameter 75.0 mm. Calculate the appropriate punch and die sizes for this operation. (Take Allowance coefficient A. = 0.075)arrow_forward
- 1. In the manufacture of automotive-body panels from carbon-steel sheet, stretcher strains (Lueders bands) are observed, which detrimentally affect surface finish. How can stretcher strains be eliminated? Explain with appropriate sketches. Also discuss how wrinkles in a deep drawing operation can be eliminated.arrow_forwardWith a neat diagram differentiate the direct and indirect extrusion process. Write any two advantages and applications of extrusion.arrow_forwardGiven a 6.5 x 2.5 x 1.5 cm solid block of wood and a bandsaw with miter sled (see image below), sketch the operations required to create the object shown right. Minimize glue joints on surfaces visible in this view. The miter sled can be rotated on a vertical axis to create angled cuts. Assume a 0.25 cm blade thickness.Use pictorial sketches to describe the process. Then prepare a multiview of both the initial block and the final result showing all the cut lines and labeling each piece. Identify unused off-cuts.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Types of Manufacturing Process | Manufacturing Processes; Author: Magic Marks;https://www.youtube.com/watch?v=koULXptaBTs;License: Standard Youtube License