The following data were collected for the reaction
- a Determine the rate law for this reaction.
- b Calculate the rate constant.
- c Calculate the rate when [A] = 0.200 M and [B] = 0.200 M.
(a)
Interpretation:
The rate law and the rate constant for the reaction along with the rates for the given concentrations have to be calculated.
Concept Introduction:
The rate of reaction is the quantity of formation of product or the quantity of reactant used per unit time. The rate of reaction doesn’t depend on the sum of amount of reaction mixture used.
The raise in molar concentration of product of a reaction per unit time or decrease in molarity of reactant per unit time is called rate of reaction and is expressed in units of
The variation in concentration of reaction or product over a certain interval of time is called average reaction rate.
The equation that relates the reaction rate to the reactants concentrations that is raised to various powers is called as rate law.
Rate law can be determined by the slow step or otherwise called as rate-determining step.
Answer to Problem 13.140QP
The rate law is Rate=
Explanation of Solution
To determine the rate law for the reaction
The rate law for the reaction can be given as,
Rate=
The value of x, can be calculated by finding the ratio of the rates for experiments 1 and 2.
In these experiments,
This goes down to
The value of y can be calculated by finding the ratio of experiments 3 and 2.
In these experiments,
This goes down to
Hence, the rate law becomes
Rate=
(b)
Interpretation:
The rate law and the rate constant for the reaction along with the rates for the given concentrations have to be calculated.
Concept Introduction:
The rate of reaction is the quantity of formation of product or the quantity of reactant used per unit time. The rate of reaction doesn’t depend on the sum of amount of reaction mixture used.
The raise in molar concentration of product of a reaction per unit time or decrease in molarity of reactant per unit time is called rate of reaction and is expressed in units of
The variation in concentration of reaction or product over a certain interval of time is called average reaction rate.
The equation that relates the reaction rate to the reactants concentrations that is raised to various powers is called as rate law.
Rate law can be determined by the slow step or otherwise called as rate-determining step.
Answer to Problem 13.140QP
The rate constant is
Explanation of Solution
To calculate the rate constant
Rate constant can be calculated from the data of Experiment 1.
k=
The rate constant =
(c)
Interpretation:
The rate law and the rate constant for the reaction along with the rates for the given concentrations have to be calculated.
Concept Introduction:
The rate of reaction is the quantity of formation of product or the quantity of reactant used per unit time. The rate of reaction doesn’t depend on the sum of amount of reaction mixture used.
The raise in molar concentration of product of a reaction per unit time or decrease in molarity of reactant per unit time is called rate of reaction and is expressed in units of
The variation in concentration of reaction or product over a certain interval of time is called average reaction rate.
The equation that relates the reaction rate to the reactants concentrations that is raised to various powers is called as rate law.
Rate law can be determined by the slow step or otherwise called as rate-determining step.
Answer to Problem 13.140QP
The rate of the reaction at given concentration is
Explanation of Solution
To calculate the rate for the given concentration
Concentration of
Rate =
Rate=
Rate =
The rate of the reaction at given concentration =
Want to see more full solutions like this?
Chapter 13 Solutions
General Chemistry - Standalone book (MindTap Course List)
- 4.3 Explain the following terms: 4.3.1 Normal boiling point. 4.3.2 Cooling curve. 4.3.3 Congruent melting. 4.3.4 Ideal solution. 4.3.5 Phase diagram of a pure substance.arrow_forwardFor CO, an electronic transition occurs at 2x1015 Hz. If the dipole moment of the transition is of the order of 1 Debye, calculate:a) The Einstein coefficient of stimulated emissionb) The lifetime of the excited statec) The natural width (in Hz)Data: epsilon 0 = 8.85419x10-12 C2m-1J-1; 1 D = 3.33564x10-30 C m;arrow_forwardA radiation of intensity l0 = 2.5x1010 photos s-1 cm2 affects a dispersion and produces a transmittance of 0.1122. How much incident radiation is absorbed by the music screen?arrow_forward
- If a radiation intensity l0 = 2.5x1010 fotones s-1 cm2 causes a dissolución and an absorbance of 0.95 will be recorded. How much incident radiation is absorbed by the music screen?arrow_forwardFrom the causes of the detection of a spectral band of a spectrum obtained by a signal in the gaseous phase that is indicated, you can avoid or minimize those that have their origin in:a) the Doppler effectb) collisionsc) the life time of the excited statearrow_forwarda) Why is it possible that all types of atoms occupy the fundamental energy level?b) What should be the value of the participation function so that it occurs?c) keep in mind that the translational levels of a system are very close, which must be the condition that tenga lugar el condensado de átomos en el fundamental level?arrow_forward
- At the polar moment of Rnm transition, you can confirm thata) nunca can be ser 0b) is a very important magnitude in Raman spectroscopyc) is related to the probability of spectroscopic transactionsd) is related to the selection rulesarrow_forwardIn Fourier transformed spectroscopya) use a very sensitive monocromador systemb) the detection time is inferior to conventional spectroscopiac) the signal is detected depending on the frequencyd) occurs simultaneously at all frequency intervalsarrow_forwardIf a radiation intensity l0 = 2.5x1010 fotones s-1cm2 results in a dissolución, an absorption of 0.95 will be recorded. What is the percentage of incident radiation and transmission?a) 88.88% b) 5% c) 11.22% d) 95%arrow_forward
- Indicate the spectroscopic transmission that requires greater energy radiation. Justification:a) NMR b) vibration c) electronica d) rotationarrow_forwardAfter an induced absorption process of an intensity, there are (without population inversion) transitions between:a) vibrational and rotational levels in the infrared region, we obtainb) vibrational levels exclusively in the infrared regionc) vibrational and rotational levels in the microwave regiond) transitions between nuclear spin levels in the radio frequency regionarrow_forwardIn a spontaneous emission process:a) the ground state population decreasesb) the excited state population decreasesc) the non-radiative component is predominantd) the emitted radiation is coherentarrow_forward
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning