A hypothetical reaction has the two-step mechanism
The potential-energy curve for the reaction is
- a Write the chemical formulas of the reactants, products, and the reaction intermediate on the potential energy curve.
- b From the mechanism, what is the overall reaction?
- c What is the rate-limiting step for the reaction?
- d Propose a rate law based on the rate-limiting step.
- e Is the reaction exothermic or endothermic?
(a)
Interpretation:
The explanations for the given set have to be answered.
Concept Introduction:
The rate of reaction is the quantity of formation of product or the quantity of reactant used per unit time. The rate of reaction doesn’t depend on the sum of amount of reaction mixture used.
The raise in molar concentration of product of a reaction per unit time or decrease in molarity of reactant per unit time is called rate of reaction and is expressed in units of
The variation in concentration of reaction or product over a certain interval of time is called average reaction rate.
The equation that relates the reaction rate to the reactants concentrations that is raised to various powers is called as rate law.
Rate law can be determined by the slow step or otherwise called as rate-determining step.
The overall chemical equation is represented by the net result of two elementary reactions in the mechanism. This is obtained by summing up the steps and canceling the species that occur in either side of the reactions.
A catalyst is substance that provides a pathway for the reaction to occur rapidly than in mechanism of an uncatalyzed reaction.
The catalyst gets consumed in the first step of the reaction and it can be regenerated in the later step of the reaction.
A species that is formed during a chemical reaction which does not appear in overall reacts due its presence in the following step in the mechanism is called Reaction intermediate.
To write the chemical formula of the reactants, products and the reaction intermediate
Explanation of Solution
In the potential energy diagram given below, the dotted lines represents the bonds that are formed or broken.
Figure 1
(b)
Interpretation:
The explanations for the given set have to be answered.
Concept Introduction:
The rate of reaction is the quantity of formation of product or the quantity of reactant used per unit time. The rate of reaction doesn’t depend on the sum of amount of reaction mixture used.
The raise in molar concentration of product of a reaction per unit time or decrease in molarity of reactant per unit time is called rate of reaction and is expressed in units of
The variation in concentration of reaction or product over a certain interval of time is called average reaction rate.
The equation that relates the reaction rate to the reactants concentrations that is raised to various powers is called as rate law.
Rate law can be determined by the slow step or otherwise called as rate-determining step.
The overall chemical equation is represented by the net result of two elementary reactions in the mechanism. This is obtained by summing up the steps and canceling the species that occur in either side of the reactions.
A catalyst is substance that provides a pathway for the reaction to occur rapidly than in mechanism of an uncatalyzed reaction.
The catalyst gets consumed in the first step of the reaction and it can be regenerated in the later step of the reaction.
A species that is formed during a chemical reaction which does not appear in overall reacts due its presence in the following step in the mechanism is called Reaction intermediate.
To write the overall reaction
Explanation of Solution
The overall reaction is given by addition of two steps of the mechanism and by eliminating intermediate ABC.
The overall reaction is given as,
(c)
Interpretation:
The explanations for the given set have to be answered.
Concept Introduction:
The rate of reaction is the quantity of formation of product or the quantity of reactant used per unit time. The rate of reaction doesn’t depend on the sum of amount of reaction mixture used.
The raise in molar concentration of product of a reaction per unit time or decrease in molarity of reactant per unit time is called rate of reaction and is expressed in units of
The variation in concentration of reaction or product over a certain interval of time is called average reaction rate.
The equation that relates the reaction rate to the reactants concentrations that is raised to various powers is called as rate law.
Rate law can be determined by the slow step or otherwise called as rate-determining step.
The overall chemical equation is represented by the net result of two elementary reactions in the mechanism. This is obtained by summing up the steps and canceling the species that occur in either side of the reactions.
A catalyst is substance that provides a pathway for the reaction to occur rapidly than in mechanism of an uncatalyzed reaction.
The catalyst gets consumed in the first step of the reaction and it can be regenerated in the later step of the reaction.
A species that is formed during a chemical reaction which does not appear in overall reacts due its presence in the following step in the mechanism is called Reaction intermediate.
To identify the rate limiting step
Explanation of Solution
The second step of the reaction is the rate limiting step since it has the highest overall energy of activation.
(d)
Interpretation:
The explanations for the given set have to be answered.
Concept Introduction:
The rate of reaction is the quantity of formation of product or the quantity of reactant used per unit time. The rate of reaction doesn’t depend on the sum of amount of reaction mixture used.
The raise in molar concentration of product of a reaction per unit time or decrease in molarity of reactant per unit time is called rate of reaction and is expressed in units of
The variation in concentration of reaction or product over a certain interval of time is called average reaction rate.
The equation that relates the reaction rate to the reactants concentrations that is raised to various powers is called as rate law.
Rate law can be determined by the slow step or otherwise called as rate-determining step.
The overall chemical equation is represented by the net result of two elementary reactions in the mechanism. This is obtained by summing up the steps and canceling the species that occur in either side of the reactions.
A catalyst is substance that provides a pathway for the reaction to occur rapidly than in mechanism of an uncatalyzed reaction.
The catalyst gets consumed in the first step of the reaction and it can be regenerated in the later step of the reaction.
A species that is formed during a chemical reaction which does not appear in overall reacts due its presence in the following step in the mechanism is called Reaction intermediate.
To propose a rate law based on rate limiting step
Explanation of Solution
The rate is written on the slow step,
The first step reaches the state of equilibrium rapidly and the rate of the forward reaction is equal to the rate of the reverse. This is given as,
Rearranging this equation and solve for
Substitute the above in the rate law to eliminate
Rate=
(e)
Interpretation:
The explanations for the given set have to be answered.
Concept Introduction:
The rate of reaction is the quantity of formation of product or the quantity of reactant used per unit time. The rate of reaction doesn’t depend on the sum of amount of reaction mixture used.
The raise in molar concentration of product of a reaction per unit time or decrease in molarity of reactant per unit time is called rate of reaction and is expressed in units of
The variation in concentration of reaction or product over a certain interval of time is called average reaction rate.
The equation that relates the reaction rate to the reactants concentrations that is raised to various powers is called as rate law.
Rate law can be determined by the slow step or otherwise called as rate-determining step.
The overall chemical equation is represented by the net result of two elementary reactions in the mechanism. This is obtained by summing up the steps and canceling the species that occur in either side of the reactions.
A catalyst is substance that provides a pathway for the reaction to occur rapidly than in mechanism of an uncatalyzed reaction.
The catalyst gets consumed in the first step of the reaction and it can be regenerated in the later step of the reaction.
A species that is formed during a chemical reaction which does not appear in overall reacts due its presence in the following step in the mechanism is called Reaction intermediate.
To identify the type of reaction
Explanation of Solution
The reaction is identified as exothermic reaction since the energy per mole of the products is higher than the energy per mole of reactants.
Want to see more full solutions like this?
Chapter 13 Solutions
General Chemistry - Standalone book (MindTap Course List)
- Substances that poison a catalyst pose a major concern for many engineering designs, including those for catalytic converters. One design option is to add materials that react with potential poisons before they reach the catalyst. Among the commonly encountered catalyst poisons are silicon and phosphorus, which typically form phosphate or silicate ions in the oxidizing environment of an engine. Group 2 elements are added to the catalyst to react with these contaminants before they reach the working portion of the catalytic converter. If estimates show that a catalytic converter will be exposed to 625 g of silicon during its lifetime, what mass of beryllium would need to be included in the design?arrow_forward. Account for the increase in reaction rate brought about by a catalyst.arrow_forwardIodomethane (CH3I) is a commonly used reagent in organic chemistry. When used properly, this reagent allows chemists to introduce methyl groups in many different useful applications. The chemical does pose a risk as a carcinogen, possibly owing to iodomethanes ability to react with portions of the DNA strand (if they were to come in contact). Consider the following hypothetical initial rates data: [DNA]0 ( mol/L) [CH3I]0 ( mol/L) Initial Rate (mol/Ls) 0.100 0.100 3.20 104 0.100 0.200 6.40 104 0.200 0.200 1.28 103 Which of the following could be a possible mechanism to explain the initial rate data? MechanismIDNA+CH3IDNACH3++IMechanismIICH3ICH3++ISlowDNA+CH3+DNACH3+Fastarrow_forward
- Consider the following statements: In general, the rate of a chemical reaction increases a bit at first because it takes a while for the reaction to get warmed up. After that, however, the rate of the reaction decreases because its rate is dependent on the concentrations of the reactants, and these are decreasing. Indicate everything that is correct in these statements, and indicate everything that is incorrect. Correct the incorrect statements and explain.arrow_forwardOne of the concerns about the use of Freons is that they will migrate to the upper atmosphere, where chlorine atoms can be generated by the following reaction: CCl2F2(g)Freon-12hvCF2Cl(g)+Cl(g) Chlorine atoms can act as a catalyst for the destruction of ozone. The activation energy for the reaction Cl(g) + O3(g) ClO(g) + O2(g) Is 2.1 kJ/mol. Which is the more effective catalyst for the destruction of ozone, Cl or NO? (See Exercise 75.)arrow_forwardDefine these terms: (a) unimolecular reaction (b) bimolecular reaction (c) elementary reaction (d) overall reactionarrow_forward
- For each of the following pairs of reaction diagrams, identify which of the pair is catalyzed:arrow_forwardA rate of reaction depends on four variables (Question 13.1). Explain by means of an example how the rate law deals with each of these variables.arrow_forwardDetermine rxnH 25 C for the following reaction: NO g O2 g NO2 g This reaction is a major participant in the formation of smog.arrow_forward
- Chemical reactions occur when reactants collide. What are two factors that may prevent a collision from producing a chemical reaction?arrow_forwardThe reaction for the Haber process, the industrial production of ammonia, is N2(g)+3H2(g)2NH3(g) Assume that under certain laboratory conditions ammonia is produced at the rate of 6.29 ×10-5 molL-1s-1. At what rate is nitrogen consumed? At what rate is hydrogen consumed?arrow_forwardMost reactions occur by a series of steps. The energy profile for a certain reaction that proceeds by a two-step mechanism is On the energy profile, indicate a. the positions of reactants and products. b. the activation energy for the overall reaction. c. E for the reaction. d. Which point on the plot represents the energy of the intermediate in the two-step reaction? e. Which step in the mechanism for this reaction is rate determining, the first or the second step? Explain.arrow_forward
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co
- Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning