Interpretation:
The average rate constant of the decomposition of Azomethane has to be calculated.
Concept Introduction:
The
The raise in molar concentration of product of a reaction per unit time or decrease in molarity of reactant per unit time is called rate of reaction and is expressed in units of
The equation that relates the reaction rate to the reactants concentrations that is raised to various powers is called as rate law.
Rate law can be determined by the slow step or otherwise called as rate-determining step.
Rate constant is defined as proportionality constant in the connection between rate and concentrations.
To calculate the average rate constant of the decomposition of Azomethane
Answer to Problem 13.97QP
The average rate constant of the decomposition of Azomethane is
Explanation of Solution
Given,
The average concentration and division of the rate by the average concentration are equal for all three time intervals.
The calculation of the rate constant for each interval is done below,
For 10 minutes,
For 20 minutes,
For 30 minutes,
Hence, the average rate constant can be given as,
The average rate constant of the decomposition of Azomethane =
The average rate constant of the decomposition of Azomethane was calculated and found to be
Want to see more full solutions like this?
Chapter 13 Solutions
General Chemistry - Standalone book (MindTap Course List)
- Isomerization of CH3NC occurs slowly when CH3NC is heated. CH3NC(g) CH3CN(g) To study the rate of this reaction at 488 K, data on [CH3NC] were collected at various times. Analysis led to the following graph. (a) What is the rate law for this reaction? (b) What is the equation for the straight line in this graph? (c) Calculate the rate constant for this reaction. (d) How long does it take for half of the sample to isomerize? (e) What is the concentration of CH3NC after 1.0 104 s?arrow_forwardOne experimental procedure that can be used to determine the rate law of a reaction is the method of initial rates. What data are gathered in the method of initial rates, and how are these data manipulated to determine k and the orders of the species in the rate law? Are the units for k. the rate constant, the same for all rate laws? Explain. If a reaction is first order in A, what happens to the rate if [A] is tripled? If the initial rate for a reaction increases by a factor of 16 when [A] is quadrupled, what is the order of n? If a reaction is third order in A and [A] is doubled, what happens to the initial rate? If a reaction is zero order, what effect does [A] have on the initial rate of a reaction?arrow_forwardNitryl fluoride is an explosive compound that can be made by oxidizing nitrogen dioxide with fluorine: 2 NO2(g) + F2(g) → 2 NO2F(g) Several kinetics experiments, all done at the same temperature and involving formation of nitryl fluoride, are summarized in this table: Write the rate law for the reaction. Determine what the order of the reaction is with respect to each reactant and each product. Calculate the rate constant k and express it in appropriate units.arrow_forward
- Hydrogen peroxide, H2O2(aq), decomposes to H2O() and O2(g) in a reaction that is first-order in H2O2 and has a rate constant k = 1.06 103 min1 at a given temperature. (a) How long will it take for 15% of a sample of H2O2 to decompose? (b) How long will it take for 85% of the sample to decompose?arrow_forwardSucrose, a sugar, decomposes in acid solution to give glucose and fructose. The reaction is first-order in sucrose, and the rate constant at 25 C is k = 0.21 h1. If the initial concentration of sucrose is 0.010 mol/L, what is its concentration after 5.0 h?arrow_forwardHydrogen iodide decomposes when heated, forming H2(g) and I2(g). The rate law for this reaction is [HI]/t = k[HI]2. At 443C, k = 30. L/mol min. If the initial HI(g) concentration is 1.5 102 mol/L, what concentration of HI(g) will remain after 10. minutes?arrow_forward
- The Raschig reaction produces the industrially important reducing agent hydrazine, N2H4, from ammonia, NH3, and hypochlorite ion, OCl−, in basic aqueous solution. A proposed mechanism is Step 1: Step 2: Step 3: What is the overall stoichiometric equation? Which step is rate-limiting? What reaction intermediates are involved? What rate law is predicted by this mechanism?arrow_forwardThe catalyzed decomposition of hydrogen peroxide is first-order in [H2O2]. It was found that the concentration of H2O2 decreased from 0.24 M to 0.060 M over a period of 282 minutes. What is the half-life of H2O2? What is the rate constant for this reaction? What is the initial rate of decomposition at the beginning of this experiment (when [H2O2] = 0.24 M)?arrow_forwardAmmonia decomposes when heated according to the equation NH3(g) NH2(g) + H(g) The data in the table for this reaction were collected at a high temperature. Plot In [NH3] versus time and 1/[NH3] versus time. What is the order of this reaction with respect to NH3? Find the rate constant for the reaction from the slope.arrow_forward
- Ozone, O3, in the Earths upper atmosphere decomposes according to the equation 2 O3(g) 3 O2(g) The mechanism of the reaction is thought to proceed through an initial fast, reversible step followed by a slow, second step. Step 1: Fast, reversible O3(g) O2(g) + O(g) Step 2: Slow O3(g) + O(g) 2 O2(g) (a) Which of the steps is rate-determining? (b) Write the rate equation for the rate-determining steparrow_forwardThe reaction NO(g) + 1/2 Cl2(g) NOCl(g) is first-order in [Cl2] and second-order with respect to [NO]. Under a given set of conditions, the initial rate of this reaction is 620 106 mol/L s. What is the rate of this reaction if the concentration of NO is doubled and the concentration of Cl2 is reduced to half the original value? (a) 6.20 106 mol/L s (b) 124 105 mol/L s (c) 2.48 105 mol/L s (d) 4.96 105 mol/L sarrow_forwardChlorine dioxide, ClO2, is a reddish-yellow gas that is soluble in water. In basic solution it gives ClO3 and ClO2 ions. 2ClO2(aq)+2OH(aq)ClO3(aq)+ClO2(aq)+H2O To obtain the rate law for this reaction, the following experiments were run and, for each, the initial rate of reaction of ClO2 was determined. Obtain the rate law and the value of the rate constant.arrow_forward
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning