(a)
Interpretation:
The rate of three reactions has to be ranked based on their concentrations and the rate law the reaction has to be written in better way.
Concept Introduction:
The
The raise in molar concentration of product of a reaction per unit time or decrease in molarity of reactant per unit time is called rate of reaction and is expressed in units of
The equation that relates the reaction rate to the reactants concentrations that is raised to various powers is called as rate law.
To rank the rate of three reactions based on their concentrations
(b)
Interpretation:
The rate of three reactions has to be ranked based on their concentrations and the rate law the reaction has to be written in better way.
Concept Introduction:
The rate of reaction is the quantity of formation of product or the quantity of reactant used per unit time. The rate of reaction doesn’t depend on the sum of amount of reaction mixture used.
The raise in molar concentration of product of a reaction per unit time or decrease in molarity of reactant per unit time is called rate of reaction and is expressed in units of
The equation that relates the reaction rate to the reactants concentrations that is raised to various powers is called as rate law.
To write the rate law
Want to see the full answer?
Check out a sample textbook solutionChapter 13 Solutions
General Chemistry - Standalone book (MindTap Course List)
- Consider the following statements: In general, the rate of a chemical reaction increases a bit at first because it takes a while for the reaction to get warmed up. After that, however, the rate of the reaction decreases because its rate is dependent on the concentrations of the reactants, and these are decreasing. Indicate everything that is correct in these statements, and indicate everything that is incorrect. Correct the incorrect statements and explain.arrow_forwardThe reaction 2 NO(g) + 2 H2(g) N2(g) + 2 H2O(g) was studied at 904 C, and the data in the table were collected. (a) Determine the order of the reaction for each reactant. (b) Write the rate equation for the reaction. (c) Calculate the rate constant for the reaction. (d) Find the rate of appearance of N2 at the instant when [NO] = 0.350 mol/L and [H] = 0.205 mol/L.arrow_forwardThe following statements relate to the reaction for the formation of HI: H2(g) + I2(g) -* 2 HI(g) Rate = it[HJ [I2J Determine which of the following statements are true. If a statement is false, indicate why it is incorrect. The reaction must occur in a single step. This is a second-order reaction overall. Raising the temperature will cause the value of k to decrease. Raising the temperature lowers the activation energy' for this reaction. If the concentrations of both reactants are doubled, the rate will double. Adding a catalyst in the reaction will cause the initial rate to increase.arrow_forward
- The following statements relate to the reaction for the formation of HI: H2(g) + I2(g) 2 HI(g)Rate = k[H2][I2] Determine which of the following statements are true. If a statement is false, indicate why it is incorrect. (a) The reaction must occur in a single step. (b) This is a second-order reaction overall. (c) Raising the temperature will cause the value of k to decrease. (d) Raising the temperature lowers the activation energy for this reaction. (e) If the concentrations of both reactants are doubled, the rate will double. (f) Adding a catalyst in the reaction will cause the initial rate to increase.arrow_forwardKinetics I Consider the hypothetical reaction A(g) + 2B(g) h C(g). The four containers below represent this reaction being run with different initial amounts of A and B. Assume that the volume of each container is 1.0 L. The reaction is second order with respect to A and first order with respect to B. a Based on the information presented in the problem, write the rate law for the reaction. b Which of the containers, W, X, Y, or Z, would have the greatest reaction rate? Justify your answer. c Which of the containers would have the lowest reaction rate? Explain. d If the volume of the container X were increased to 2.0 L, how would the rate of the reaction in this larger container compare to the rate of reaction run in the 1.0-L container X? (Assume that the number of A and B atoms is the same in each case.) e If the temperature in container W were increased, what impact would this probably have on the rate of reaction? Why? f If you want to double the rate of reaction in container X, what are some things that you could do to the concentration(s) of A and B? g In which container would you observe the slowest rate of formation of C? h Assuming that A and B are not in great excess, which would have the greater impact on the rate of reaction in container W: removing a unit of B or removing a unit of A? Explain. i Describe how the rate of consumption of A compares to the rate of consumption of B. If you cannot answer this question, what additional information do you need to provide an answer? j If the product C were removed from the container as it formed, what effect would this have on the rate of the reaction?arrow_forwardThe reaction H2SeO3(aq) + 6I-(aq) + 4H+(aq) Se(s) + 2I-3(aq) + 3H2O(l) was studied at 0C, and the following data were obtained: [H2SeO3]0 (mol/L) [H+]0 (mol/L) [I]0(mol/L) Initial Rate (mol/L s) 1.0 104 2.0 102 2.0 102 1.66 107 2.0 104 2.0 102 2.0 10-2 3.33 107 3.0 104 2.0 102 2.0 102 4.99 107 1.0 104 4.0 102 2.0 102 6.66 107 1.0 104 1.0 102 2.0 102 0.42 107 1.0 104 2.0 102 4.0 102 13.2 107 1.0 104 1.0 102 4.0 102 3.36 107 These relationships hold only if there is a very small amount of I3 present. What is the rate law and the value of the rate constant? (Assumethatrate=[H2SeO3]t)arrow_forward
- Nitrogen monoxide reacts with hydrogen as follows: 2NO(g)+H2(g)N2O(g)+H2O(g) The rate law is [H2]/t = k[NO]2[H2], where k is 1.10 107 L2/(mol2 s) at 826C. A vessel contains NO and H2 at 826C. The partial pressures of NO and H2 are 144 mmHg and 315 mmHg, respectively. What is the rate of decrease of partial pressure of NO? See Problem 13.151.arrow_forwardA reaction is believed to occur by the following mechanism: Stepl: 2AI (Fast equilibrium) Step 2: I + B C (Slow) Overall: 2 A + B C What experimentally determined rate law would lead to this mechanism? (a) Rate = k[A][B] (b) Rate = k[A]2[B] (c) Rate = k[A]2 (d) Rate = k[I][B]arrow_forwardThe reaction NO(g) + O,(g) — NO,(g) + 0(g) plays a role in the formation of nitrogen dioxide in automobile engines. Suppose that a series of experiments measured the rate of this reaction at 500 K and produced the following data; [NO] (mol L ’) [OJ (mol L 1) Rate = -A[NO]/Af (mol L_1 s-1) 0.002 0.005 8.0 X 10"'7 0.002 0.010 1.6 X 10-'6 0.006 0.005 2.4 X IO-'6 Derive a rate law for the reaction and determine the value of the rate constant.arrow_forward
- The data in the table are for the reaction of NO and O2 at 660 K. NO(g) + O2(g) NO2(g) (a) Determine the order of the reaction for each reactant. (b) Write the rate equation for the reaction. (c) Calculate the rate constant. (d) Calculate the rate (in mol/L s) at the instant when [NO] = 0.015 mol/L and [O2] = 0.0050 mol/L. (e) At the instant when NO is reacting at the rate 1.0 104 mol/L s, what is the rate at which O2 is reacting and NO2 is forming?arrow_forwardKinetics II You and a friend are working together in order to obtain as much kinetic information as possible about the reaction A(g)B(g)+C(g). One thing you know before performing the experiments is that the reaction is zero order, first order, or second order with respect to A. Your friend goes off, runs the experiment, and brings back the following graph. a After studying the curve of the graph, she declares that the reaction is second order, with a corresponding rate law of Rate = k[A]2. Judging solely on the basis of the information presented in this plot, is she correct in her statement that the reaction must be second order? Here are some data collected from her experiment: Time (s) [A] 0.0 1.0 1.0 0.14 3.0 2.5 103 5.0 4.5 105 7.0 8.3 107 b The half-life of the reaction is 0.35 s. Do these data support the reaction being second order, or is it something else? Try to reach a conclusive answer without graphing the data. c What is the rate constant for the reaction? d The mechanism for this reaction is found to be a two-step process, with intermediates X and Y. The first step of the reaction is the rate-determining step. Write a possible mechanism for the reaction. e You perform additional experiments and find that the rate constant doubles in value when you increase the temperature by 10oC. Your lab partner doesnt understand why the rate constant changes in this manner. What could you say to your partner to help her understand? Feel free to use figures and pictures as part of your explanation.arrow_forwardYou are studying the kinetics of the reaction H2(g) + F2(g) 2HF(g) and you wish to determine a mechanism for the reaction. You run the reaction twice by keeping one reactant at a much higher pressure than the other reactant (this lower-pressure reactant begins at 1.000 atm). Unfortunately, you neglect to record which reactant was at the higher pressure, and you forget which it was later. Your data for the first experiment are: Pressure of HF (atm) Time(min) 0 0 0.300 30.0 0.600 65.8 0.900 110.4 1.200 169.1 1.500 255.9 When you ran the second experiment (in which the higher pressure reactant was run at a much higher pressure), you determine the values of the apparent rate constants to be the same. It also turns out that you find data taken from another person in the lab. This individual found that the reaction proceeds 40.0 times faster at 55C than at 35C. You also know, from the energy-level diagram, that there are three steps to the mechanism, and the first step has the highest activation energy. You look up the bond energies of the species involved and they are (in kJ/mol): H8H (432), F8F (154), and H8F (565). a. Sketch an energy-level diagram (qualitative) that is consistent with the one described previously. Hint: See Exercise 106. b. Develop a reasonable mechanism for the reaction. c. Which reactant was limiting in the experiments?arrow_forward
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning