(a)
Interpretation:
The given statements have to be answered.
Concept Introduction:
The time taken by the concentration of reaction to get reduced of its original concentration is called as half-life reaction.
Half life for first order reactions:
The half life for the first order reaction is constant and it is independent of the reactant concentration.
Half life period of first order reaction can be calculated using the equation,
Half life for second order reactions:
In second order reaction, the half-life is inversely proportional to the initial concentration of the reactant (A).
The half-life of second order reaction can be calculated using the equation,
Since the reactant will be consumed in lesser amount of time, these reactions will have shorter half-life.
To complete the pictures
(a)
Explanation of Solution
The reaction follows first order with presence of half-life of ten seconds.
There are 16 AB particles present in the container,
After one half life (10s) 8 particles will be reacted and 8 remains unreacted.
After two-half lives (20s) 12 particles will be reacted and 4 remains unreacted.
The completed pictures are,
Figure 1
(b)
Interpretation:
The given statements have to be answered.
Concept Introduction:
The time taken by the concentration of reaction to get reduced of its original concentration is called as half-life reaction.
Half life for first order reactions:
The half life for the first order reaction is constant and it is independent of the reactant concentration.
Half life period of first order reaction can be calculated using the equation,
Half life for second order reactions:
In second order reaction, the half-life is inversely proportional to the initial concentration of the reactant (A).
The half-life of second order reaction can be calculated using the equation,
Since the reactant will be consumed in lesser amount of time, these reactions will have shorter half-life.
To explain the changes in completed figure if the reaction was second-order with same half life
(b)
Explanation of Solution
If the half-life is similar for second-order reaction, the container t=20s would have more number of AB and fewer A and B when compared to part a.
(c)
Interpretation:
The given statements have to be answered.
Concept Introduction:
The time taken by the concentration of reaction to get reduced of its original concentration is called as half-life reaction.
Half life for first order reactions:
The half life for the first order reaction is constant and it is independent of the reactant concentration.
Half life period of first order reaction can be calculated using the equation,
Half life for second order reactions:
In second order reaction, the half-life is inversely proportional to the initial concentration of the reactant (A).
The half-life of second order reaction can be calculated using the equation,
Since the reactant will be consumed in lesser amount of time, these reactions will have shorter half-life.
To give the relative
(c)
Explanation of Solution
After 10 seconds, the concentration of the particles is one-half their initial value. Then relative rate of reactions for first-order at the start and after 10 seconds are,
(d)
Interpretation:
The given statements have to be answered.
Concept Introduction:
The time taken by the concentration of reaction to get reduced of its original concentration is called as half-life reaction.
Half life for first order reactions:
The half life for the first order reaction is constant and it is independent of the reactant concentration.
Half life period of first order reaction can be calculated using the equation,
Half life for second order reactions:
In second order reaction, the half-life is inversely proportional to the initial concentration of the reactant (A).
The half-life of second order reaction can be calculated using the equation,
Since the reactant will be consumed in lesser amount of time, these reactions will have shorter half-life.
To give the relative reaction rates for second order reaction at the start of reaction and after 10 seconds elapsed
(d)
Explanation of Solution
After 10 seconds, the concentration of the particles is one-half their initial value. Then relative rate of reactions for second order at the start and after 10 seconds are,
Want to see more full solutions like this?
Chapter 13 Solutions
General Chemistry - Standalone book (MindTap Course List)
- ADDITIONAL PRACTICE PRACTICE Problems Write formulas for ionic compounds composed of the following ions. Use units as a guide to your solutions. 24. sodium and nitrate 25. calcium and chlorate 26. aluminum and carbonate 27. CHALLENGE Write the formula for an ionic compound formed by ions from a group 2 element and polyatomic ions composed of only carbon and oxygen. ounds 1998arrow_forward7:35 < Dji Question 19 of 22 5G 50% Submit What is the pH of a buffer made from 0.350 mol of HBrO (Ka = 2.5 × 10-9) and 0.120 mol of KBRO in 2.0 L of solution? | 1 2 3 ☑ 4 5 6 C 7 8 ☐ 9 +/- Tap here for additional resources ||| 0 ×10 Гarrow_forwardaw the major substitution products you would expect for the reaction shown below. If substitution would not occur at a significant rate under these conditions, check the box underneath the drawing area instead. Be sure you use wedge and dash bonds where necessary, for example to distinguish between major products. Note for advanced students: you can assume that the reaction mixture is heated mildly, somewhat above room temperature, but strong heat or reflux is not used. B C Br HO O Substitution will not occur at a significant rate. Explanation Check + Х Click and drag to start drawing a structure. © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center | Accessibarrow_forward
- Complete the following reactions with the necessary reagents to complete the shown transformation. Example: 1. 2. ? 3. 018 Br OH Answer: H₂O, H2SO4, HgSO4arrow_forward7:34 • < Question 18 of 22 5G 50% Submit What is the pH of a buffer made from 0.220 mol of HCNO (Ka = 3.5 × 10-4) and 0.410 mol of NaCNO in 2.0 L of solution? 1 2 3 ☑ 4 5 6 C 7 8 | 9 +/- 0 ×10 Tap here for additional resources ||| Гarrow_forward6:46 ✔ 5G 58% < Question 7 of 22 Submit What is the primary species in solution at the halfway point in a titration of NH3 with HBr? A NH3 and H+ B NH₁+ and H+ C NH4+ D NH3 and NH4+ Tap here for additional resources |||arrow_forward
- 6:49 Dji < Question 15 of 22 4G 57% Submit The pOH of a solution is 10.50. What is the OH- concentration in the solution? A 3.2 × 10-4 M B C 3.2 x 10-11 M 10.50 M D 4.2 M E 3.50 M Tap here for additional resources |||arrow_forwardヨ 6:49 Dji < Question 13 of 22 5G 57% Submit The pH of a solution is 2.40. What is the H+ concentration in the solution? A B 2.5 x 10-12 M 4.0 × 10-3 M C 2.40 M D 4.76 M 11.60 M Tap here for additional resources |||arrow_forwardヨ C 6:48 Di✔ < Question 12 of 22 5G 57% Submit The pH of a solution is 12.50. What is the H+ concentration in the solution? A 0.032 M B 3.2 × 10-13 M 1.5 M D 9.25 M 12.50 M Tap here for additional resources |||arrow_forward
- ヨ C 6:48 Di✔ < Question 11 of 22 5G 57% Submit The pH of a solution is 1.50. What is the H+ concentration in the solution? A 0.032 M B 3.2 × 10-13 M 1.5 M D 2.15 M 12.50 M Tap here for additional resources |||arrow_forwardSelect the product of the following reaction. Lon HO Meat ?? CH₂OH OH A D OH OCH B OH of OCH of CH חח E C CHarrow_forwardPlease correct answer and don't used hand raitingarrow_forward
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningPhysical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning