(a)
Interpretation:
The rate equation for the given elementary reactions has to be written.
Concept Introduction:
The
The raise in molar concentration of product of a reaction per unit time or decrease in molarity of reactant per unit time is called rate of reaction and is expressed in units of
The equation that relates the reaction rate to the reactants concentrations that is raised to various powers is called as rate law.
To write the rate equation for the equation
(b)
Interpretation:
The rate equation for the given elementary reactions has to be written.
Concept Introduction:
The rate of reaction is the quantity of formation of product or the quantity of reactant used per unit time. The rate of reaction doesn’t depend on the sum of amount of reaction mixture used.
The raise in molar concentration of product of a reaction per unit time or decrease in molarity of reactant per unit time is called rate of reaction and is expressed in units of
The equation that relates the reaction rate to the reactants concentrations that is raised to various powers is called as rate law.
To write the rate equation for the equation
Want to see the full answer?
Check out a sample textbook solutionChapter 13 Solutions
General Chemistry - Standalone book (MindTap Course List)
- (Section 11-5) A rule of thumb is that for a typical reaction, if concentrations are unchanged, a 10-K rise in temperature increases the reaction rate by two to four times. Use an average increase of three times to answer the questions below. (a) What is the approximate activation energy of a typical chemical reaction at 298 K? (b) If a catalyst increases a chemical reactions rate by providing a mechanism that has a lower activation energy, then what change do you expect a 10-K increase in temperature to make in the rate of a reaction whose uncatalyzed activation energy of 75 kJ/mol has been lowered to one half this value (at 298 K) by addition of a catalyst?arrow_forwardOzone, O3, in the Earths upper atmosphere decomposes according to the equation 2 O3(g) 3 O2(g) The mechanism of the reaction is thought to proceed through an initial fast, reversible step followed by a slow, second step. Step 1: Fast, reversible O3(g) O2(g) + O(g) Step 2: Slow O3(g) + O(g) 2 O2(g) (a) Which of the steps is rate-determining? (b) Write the rate equation for the rate-determining steparrow_forwardWhen every collision between reactants leads to a reaction, what determines the rate at which the reaction occurs?arrow_forward
- The following statements relate to the reaction for the formation of HI: H2(g) + I2(g) 2 HI(g)Rate = k[H2][I2] Determine which of the following statements are true. If a statement is false, indicate why it is incorrect. (a) The reaction must occur in a single step. (b) This is a second-order reaction overall. (c) Raising the temperature will cause the value of k to decrease. (d) Raising the temperature lowers the activation energy for this reaction. (e) If the concentrations of both reactants are doubled, the rate will double. (f) Adding a catalyst in the reaction will cause the initial rate to increase.arrow_forwardThe reaction 2 NO(g) + 2 H2(g) N2(g) + 2 H2O(g) was studied at 904 C, and the data in the table were collected. (a) Determine the order of the reaction for each reactant. (b) Write the rate equation for the reaction. (c) Calculate the rate constant for the reaction. (d) Find the rate of appearance of N2 at the instant when [NO] = 0.350 mol/L and [H] = 0.205 mol/L.arrow_forwardDefine these terms: (a) unimolecular reaction (b) bimolecular reaction (c) elementary reaction (d) overall reactionarrow_forward
- Give at least two physical properties that might be used to determine the rate of a reaction.arrow_forwardConsider the following statements: In general, the rate of a chemical reaction increases a bit at first because it takes a while for the reaction to get warmed up. After that, however, the rate of the reaction decreases because its rate is dependent on the concentrations of the reactants, and these are decreasing. Indicate everything that is correct in these statements, and indicate everything that is incorrect. Correct the incorrect statements and explain.arrow_forwardThe following statements relate to the reaction for the formation of HI: H2(g) + I2(g) -* 2 HI(g) Rate = it[HJ [I2J Determine which of the following statements are true. If a statement is false, indicate why it is incorrect. The reaction must occur in a single step. This is a second-order reaction overall. Raising the temperature will cause the value of k to decrease. Raising the temperature lowers the activation energy' for this reaction. If the concentrations of both reactants are doubled, the rate will double. Adding a catalyst in the reaction will cause the initial rate to increase.arrow_forward
- Isomerization of CH3NC occurs slowly when CH3NC is heated. CH3NC(g) CH3CN(g) To study the rate of this reaction at 488 K, data on [CH3NC] were collected at various times. Analysis led to the following graph. (a) What is the rate law for this reaction? (b) What is the equation for the straight line in this graph? (c) Calculate the rate constant for this reaction. (d) How long does it take for half of the sample to isomerize? (e) What is the concentration of CH3NC after 1.0 104 s?arrow_forwardA reaction is believed to occur by the following mechanism: Stepl: 2AI (Fast equilibrium) Step 2: I + B C (Slow) Overall: 2 A + B C What experimentally determined rate law would lead to this mechanism? (a) Rate = k[A][B] (b) Rate = k[A]2[B] (c) Rate = k[A]2 (d) Rate = k[I][B]arrow_forwardThe Raschig reaction produces the industrially important reducing agent hydrazine, N2H4, from ammonia, NH3, and hypochlorite ion, OCl−, in basic aqueous solution. A proposed mechanism is Step 1: Step 2: Step 3: What is the overall stoichiometric equation? Which step is rate-limiting? What reaction intermediates are involved? What rate law is predicted by this mechanism?arrow_forward
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStax