Chemistry: Matter and Change
1st Edition
ISBN: 9780078746376
Author: Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher: Glencoe/McGraw-Hill School Pub Co
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 12, Problem 48A
Interpretation Introduction
Interpretation:
The atmospheric pressure
Concept introduction:
Atmospheric pressure is the force exerted by the air on a surface as gravity pulls it to Earth.
Expert Solution & Answer

Answer to Problem 48A
Explanation of Solution
Given: Atmospheric pressure is equal to
Thus,
Or,
Also,
Thus,
Or,
Conclusion
Chapter 12 Solutions
Chemistry: Matter and Change
Ch. 12.1 - Prob. 1PPCh. 12.1 - Prob. 2PPCh. 12.1 - Prob. 3PPCh. 12.1 - Prob. 4PPCh. 12.1 - Prob. 5PPCh. 12.1 - Prob. 6PPCh. 12.1 - Prob. 7PPCh. 12.1 - Prob. 8SSCCh. 12.1 - Prob. 9SSCCh. 12.1 - Prob. 10SSC
Ch. 12.1 - Prob. 11SSCCh. 12.1 - Prob. 12SSCCh. 12.1 - Prob. 13SSCCh. 12.2 - Prob. 14SSCCh. 12.2 - Prob. 15SSCCh. 12.2 - Prob. 16SSCCh. 12.2 - Prob. 17SSCCh. 12.3 - Prob. 18SSCCh. 12.3 - Prob. 19SSCCh. 12.3 - Prob. 20SSCCh. 12.3 - Prob. 21SSCCh. 12.3 - Prob. 22SSCCh. 12.3 - Prob. 23SSCCh. 12.3 - Prob. 24SSCCh. 12.3 - Prob. 25SSCCh. 12.3 - Prob. 26SSCCh. 12.4 - Prob. 27SSCCh. 12.4 - Prob. 28SSCCh. 12.4 - Prob. 29SSCCh. 12.4 - Prob. 30SSCCh. 12.4 - Prob. 31SSCCh. 12.4 - Prob. 32SSCCh. 12.4 - Prob. 33SSCCh. 12 - Prob. 34ACh. 12 - Prob. 35ACh. 12 - Prob. 36ACh. 12 - Prob. 37ACh. 12 - Prob. 38ACh. 12 - Prob. 39ACh. 12 - Prob. 40ACh. 12 - Baking Explain why the baking instructions on a...Ch. 12 - Prob. 42ACh. 12 - Prob. 43ACh. 12 - Prob. 44ACh. 12 - Prob. 45ACh. 12 - Prob. 46ACh. 12 - Prob. 47ACh. 12 - Prob. 48ACh. 12 - Prob. 49ACh. 12 - Prob. 50ACh. 12 - Prob. 51ACh. 12 - Prob. 52ACh. 12 - Prob. 53ACh. 12 - Prob. 54ACh. 12 - Prob. 55ACh. 12 - Prob. 56ACh. 12 - Prob. 57ACh. 12 - Prob. 58ACh. 12 - Prob. 59ACh. 12 - Prob. 60ACh. 12 - Prob. 61ACh. 12 - Prob. 62ACh. 12 - Prob. 63ACh. 12 - Prob. 64ACh. 12 - Prob. 65ACh. 12 - Prob. 66ACh. 12 - Prob. 67ACh. 12 - Prob. 68ACh. 12 - Prob. 69ACh. 12 - Prob. 70ACh. 12 - Prob. 71ACh. 12 - Prob. 72ACh. 12 - Prob. 73ACh. 12 - Prob. 74ACh. 12 - Prob. 75ACh. 12 - Prob. 76ACh. 12 - Prob. 77ACh. 12 - Prob. 78ACh. 12 - Prob. 79ACh. 12 - Prob. 80ACh. 12 - Prob. 81ACh. 12 - Prob. 82ACh. 12 - Prob. 83ACh. 12 - Prob. 84ACh. 12 - Prob. 85ACh. 12 - Prob. 86ACh. 12 - Prob. 87ACh. 12 - Prob. 88ACh. 12 - Prob. 89ACh. 12 - Prob. 90ACh. 12 - Prob. 91ACh. 12 - Prob. 92ACh. 12 - Prob. 93ACh. 12 - Prob. 94ACh. 12 - Prob. 95ACh. 12 - Prob. 96ACh. 12 - Prob. 97ACh. 12 - Prob. 98ACh. 12 - Prob. 99ACh. 12 - Prob. 100ACh. 12 - Prob. 101ACh. 12 - Prob. 102ACh. 12 - Prob. 103ACh. 12 - Prob. 104ACh. 12 - Prob. 105ACh. 12 - Prob. 106ACh. 12 - Prob. 108ACh. 12 - Prob. 109ACh. 12 - Prob. 110ACh. 12 - Prob. 111ACh. 12 - Prob. 112ACh. 12 - Prob. 113ACh. 12 - What is the ratio of diffusion rates for nitric...Ch. 12 - Prob. 2STPCh. 12 - Prob. 3STPCh. 12 - Use the figure below to answer Question 4....Ch. 12 - Prob. 5STPCh. 12 - Prob. 6STPCh. 12 - Prob. 7STPCh. 12 - Prob. 8STPCh. 12 - Use the table below to answer Questions 9 and 10....Ch. 12 - Prob. 10STPCh. 12 - Prob. 11STPCh. 12 - Prob. 12STPCh. 12 - Prob. 13STPCh. 12 - Prob. 14STPCh. 12 - Prob. 15STP
Additional Science Textbook Solutions
Find more solutions based on key concepts
Pure oxygen gas can be prepared in the laboratory by the decomposition of solid potassium chlorate to form soli...
Introductory Chemistry (6th Edition)
Write an equation that uses the products of photosynthesis as reactants and the reactants of photosynthesis as ...
Campbell Biology in Focus (2nd Edition)
A womans father has ornithine transcarbamylase deficiency (OTD), an X-linked recessive disorder producing menta...
Genetic Analysis: An Integrated Approach (3rd Edition)
Where is transitional epithelium found and what is its importance at those sites?
Anatomy & Physiology (6th Edition)
a. Which compound has the stretching vibration for its carbonyl group at the highest frequency: acetyl chloride...
Organic Chemistry (8th Edition)
Match each of the following items with all the terms it applies to:
Human Physiology: An Integrated Approach (8th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- pleasearrow_forwardplease help me please pleasearrow_forwardUsing reaction free energy to predict equilibrium composition Consider the following equilibrium: N2 (g) + 3H2 (g) = 2NH3 (g) AG⁰ = -34. KJ Now suppose a reaction vessel is filled with 8.06 atm of nitrogen (N2) and 2.58 atm of ammonia (NH3) at 106. °C. Answer the following questions about this system: ? rise Under these conditions, will the pressure of N2 tend to rise or fall? ☐ x10 fall Is it possible to reverse this tendency by adding H₂? In other words, if you said the pressure of N2 will tend to rise, can that be changed to a tendency to fall by adding H₂? Similarly, if you said the pressure of N2 will tend to fall, can that be changed to a tendency to rise by adding H₂? If you said the tendency can be reversed in the second question, calculate the minimum pressure of H₂ needed to reverse it. Round your answer to 2 significant digits. yes no ☐ atm ☑ 5 00. 18 Ararrow_forward
- i need help with the followingarrow_forwardUsing reaction free energy to predict equilibrium composition Consider the following equilibrium: 2NO(g) +Cl₂ (g) = 2NOC1 (g) AGº = -41. kJ Now suppose a reaction vessel is filled with 8.90 atm of chlorine (C12) and 5.71 atm of nitrosyl chloride (NOC1) at 1075. °C. Answer the following questions about this system: rise Under these conditions, will the pressure of NOCI tend to rise or fall? x10 fall Is it possible to reverse this tendency by adding NO? In other words, if you said the pressure of NOCI will tend to rise, can that be changed to a tendency to fall by adding NO? Similarly, if you said the pressure of NOCI will tend to fall, can that be changed to a tendency to rise by adding NO? yes no If you said the tendency can be reversed in the second question, calculate the minimum pressure of NO needed to reverse it. Round your answer to 2 significant digits. atm ☑ 18 Ararrow_forwardIdentifying the major species in weak acid or weak base equilibria The preparations of two aqueous solutions are described in the table below. For each solution, write the chemical formulas of the major species present at equilibrium. You can leave out water itself. Write the chemical formulas of the species that will act as acids in the 'acids' row, the formulas of the species that will act as bases in the 'bases' row, and the formulas of the species that will act as neither acids nor bases in the 'other' row. You will find it useful to keep in mind that HCN is a weak acid. acids: 0.29 mol of NaOH is added to 1.0 L of a 1.2M HCN solution. bases: ☑ other: 0.09 mol of HCl is added to acids: 1.0 L of a solution that is bases: 0.3M in both HCN and KCN. other: 0,0,... ? 00. 18 Ar 日arrow_forward
- Identifying the major species in weak acid or weak base equilibria The preparations of two aqueous solutions are described in the table below. For each solution, write the chemical formulas of the major species present at equilibrium. You can leave out water itself. Write the chemical formulas of the species that will act as acids in the 'acids' row, the formulas of the species that will act as bases in the 'bases' row, and the formulas of the species that will act as neither acids nor bases in the 'other' row. You will find it useful to keep in mind that HF is a weak acid. acids: 0.2 mol of KOH is added to 1.0 L of a 0.5 M HF solution. bases: Х other: ☐ acids: 0.10 mol of HI is added to 1.0 L of a solution that is 1.4M in both HF and NaF. bases: other: ☐ 0,0,... ด ? 18 Ararrow_forwardIdentifying the major species in weak acid or weak base equilibria The preparations of two aqueous solutions are described in the table below. For each solution, write the chemical formulas of the major species present at equilibrium. You can leave out water itself. Write the chemical formulas of the species that will act as acids in the 'acids' row, the formulas of the species that will act as bases in the 'bases' row, and the formulas of the species that will act as neither acids nor bases in the 'other' row. You will find it useful to keep in mind that NH3 is a weak base. acids: ☐ 1.8 mol of HCl is added to 1.0 L of a 1.0M NH3 bases: ☐ solution. other: ☐ 0.18 mol of HNO3 is added to 1.0 L of a solution that is 1.4M in both NH3 and NH₁Br. acids: bases: ☐ other: ☐ 0,0,... ? 000 18 Ar B 1arrow_forwardUsing reaction free energy to predict equilibrium composition Consider the following equilibrium: 2NH3 (g) = N2 (g) +3H₂ —N2 (g) AGº = 34. kJ Now suppose a reaction vessel is filled with 4.19 atm of ammonia (NH3) and 9.94 atm of nitrogen (N2) at 378. °C. Answer the following questions about this system: rise Under these conditions, will the pressure of NH 3 tend to rise or fall? ☐ x10 fall Х Is it possible to reverse this tendency by adding H₂? In other words, if you said the pressure of NH 3 will tend to rise, can that be changed to a tendency to fall by adding H₂? Similarly, if you said the pressure of NH3 will tend to fall, can that be changed to a tendency to rise by adding H₂? If you said the tendency can be reversed in the second question, calculate the minimum pressure of H₂ needed to reverse it. Round your answer to 2 significant digits. yes no atm 00. 18 Ar 무ㅎ ?arrow_forward
- Identifying the major species in weak acid or weak base equilibria The preparations of two aqueous solutions are described in the table below. For each solution, write the chemical formulas of the major species present at equilibrium. You can leave out water itself. Write the chemical formulas of the species that will act as acids in the 'acids' row, the formulas of the species that will act as bases in the 'bases' row, and the formulas of the species that will act as neither acids nor bases in the 'other' row. You will find it useful to keep in mind that HF is a weak acid. 2.2 mol of NaOH is added to 1.0 L of a 1.4M HF solution. acids: П bases: Х other: ☐ ப acids: 0.51 mol of KOH is added to 1.0 L of a solution that is bases: 1.3M in both HF and NaF. other: ☐ 00. 18 Ararrow_forwardUsing reaction free energy to predict equilibrium composition Consider the following equilibrium: N2O4 (g) 2NO2 (g) AG⁰ = 5.4 kJ Now suppose a reaction vessel is filled with 1.68 atm of dinitrogen tetroxide (N204) at 148. °C. Answer the following questions about this system: rise Under these conditions, will the pressure of N2O4 tend to rise or fall? x10 fall Is it possible to reverse this tendency by adding NO2? In other words, if you said the pressure of N2O4 will tend to rise, can that be changed to a tendency to fall by adding NO2? Similarly, if you said the pressure of N2O4 will tend to fall, can that be changed to a tendency to rise by adding NO2? If you said the tendency can be reversed in the second question, calculate the minimum pressure of NO 2 needed to reverse it. Round your answer to 2 significant digits. yes no 0.42 atm ☑ 5 0/5 ? مله Ararrow_forwardHomework 13 (Ch17) Question 4 of 4 (1 point) | Question Attempt: 2 of 2 ✓ 1 ✓ 2 = 3 4 Time Remaining: 4:25:54 Using the thermodynamic information in the ALEKS Data tab, calculate the standard reaction free energy of the following chemical reaction: 2CH3OH (g)+302 (g) → 2CO2 (g) + 4H₂O (g) Round your answer to zero decimal places. ☐ kJ x10 ☐ Subm Check 2020 Hill LLC. All Rights Reserved. Terms of Use | Privacy Cearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY

Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning

Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education

Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning

Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education

Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning

Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY