(a)
Interpretation:
For the given elementary reaction the molecularity and the rate law has to be given.
Concept introduction:
Molecularity of reaction:
Unimolecular: A molecule (reactant) undergoes rearrangement itself to give one or more products is said to be unimolecuar reactions.
Bimolecular: Two molecules (reactants) undergo collisions to give one or more products is said to be bimolecular reactions.
Termolecular: Three molecules undergo collision to give one or more products is said to be termolecular reactions.
Rate law of a reaction:
It is an equation that related to the dependence of the reaction rate on the concentration of each substrates (reactants).
(b)
Interpretation:
For the given elementary reaction the molecularity and the rate law has to be given.
Concept introduction:
Molecularity of reaction:
Unimolecular: A molecule (reactant) undergoes rearrangement itself to give one or more products is said to be unimolecuar reactions.
Bimolecular: Two molecules (reactants) undergo collisions to give one or more products is said to be bimolecular reactions.
Termolecular: Three molecules undergo collision to give one or more products is said to be termolecular reactions.
Rate law of a reaction:
It is an equation that related to the dependence of the reaction rate on the concentration of each substrates (reactants).
(c)
Interpretation:
For the given elementary reaction the molecularity and the rate law has to be given.
Concept introduction:
Molecularity of reaction:
Unimolecular: A molecule (reactant) undergoes rearrangement itself to give one or more products is said to be unimolecuar reactions.
Bimolecular: Two molecules (reactants) undergo collisions to give one or more products is said to be bimolecular reactions.
Termolecular: Three molecules undergo collision to give one or more products is said to be termolecular reactions.
Rate law of a reaction:
It is an equation that related to the dependence of the reaction rate on the concentration of each substrates (reactants).
Want to see the full answer?
Check out a sample textbook solutionChapter 12 Solutions
General Chemistry: Atoms First
- The Raschig reaction produces the industrially important reducing agent hydrazine, N2H4, from ammonia, NH3, and hypochlorite ion, OCl−, in basic aqueous solution. A proposed mechanism is Step 1: Step 2: Step 3: What is the overall stoichiometric equation? Which step is rate-limiting? What reaction intermediates are involved? What rate law is predicted by this mechanism?arrow_forwardWhat is the rate law for each of the following elementary reactions? (a) NO(g) + NO3(g) 2 NO2(g) (b) Cl(g) + H2(g) HCl(g) + H(g) (c) (CH3)3CBr(aq) (CH3)3C+(aq) + Br(aq)arrow_forwardThere are two molecules with the formula C3H6 Propane, CH3CH = CH2, is the monomer of the polymer polypropylene, which is used for indoor-outdoor carpets. Cyclopropane is used as an anesthetic: When heated to 499 C, cyclopropane rearranges (isomerizes) and forms propane with a rate constant of 5.95104s1. What is the half-life of this reaction? What fraction of the cyclopropane remains after 0.75 h at 499 C?arrow_forward
- One possible mechanism for the decomposition of nitryl chloride, NO2CI, is What is the overall reaction? What rate law would be derived from this mechanism? What effect does increasing the concentration of the product NO2 have on the reaction rate?arrow_forwardGiven the following reactions and the corresponding rate laws, in which of the reactions might the elementary reaction and the overall reaction be the same? (a) Cl2+COCI2COrate=k[ CI2]3/2[CO] (b) PCI3+CI2PCI5rate=k[PCI3][CI2] (c) 2NO+H2N2+H2Orate=k[NO][H2] (d) 2NO+O22NO2rate=k[NO]2[O2] (e) NO+O3NO2+O2rate=k[NO][O3]arrow_forwardThe following mechanism is proposed for a reaction: NO + Br2 —* NOBr2 (slow) NOBr2 + NO —»2 NOBr (fast) Write the overall equation for the reaction. What is the rate-determining step? WTiat is the intermediate in this reaction? What is the molecularity of each step of the reaction? Write the rate expression for each step.arrow_forward
- The decomposition of azomethane, (CH3)2N2, to nitrogen and ethane gases is a first-order reaction, (CH3)2N2(g)N2(g)+C2H6(g). At a certain temperature, a 29-mg sample of azomethane is reduced to 12 mg in 1.4 s. (a) What is the rate constant k for the decomposition at that temperature? (b) What is the half-life of the decomposition? (c) How long will it take to decompose 78% of the azomethane?arrow_forward11.64 HBr is oxidized in the following reaction: 4 HBr(g) + O2(g) —• 2 H2O(g) + 2 Br,(g) A proposed mechanism is HBr + O2 -* HOOBr (slow) HOOBr + HBr — 2 HOBr (fast) HOBr + HBr — H2O + Bn (fast) Show that this mechanism can account for the correct stoichiometry. Identify all intermediates in this mechanism. What is the molecularity of each elementary’ step? Write the rate expression for each elementary' step. Identify the rate-determining step.arrow_forwardA reaction is believed to occur by the following mechanism: Stepl: 2AI (Fast equilibrium) Step 2: I + B C (Slow) Overall: 2 A + B C What experimentally determined rate law would lead to this mechanism? (a) Rate = k[A][B] (b) Rate = k[A]2[B] (c) Rate = k[A]2 (d) Rate = k[I][B]arrow_forward
- One mechanism for the destruction of ozone in the upper atmosphere is a. Which species is a catalyst? b. Which species is an intermediate? c. Ea for the uncatalyzed reaction O3(g)+O(g)2O2(g) is 14.0 kJ. Ea. for the same reaction when catalyzed is 11.9 kJ. What is the ratio of the rate constant for the catalyzed reaction to that for the uncatalyzed reaction at 25C? Assume that the frequency factor A is the same for each reaction.arrow_forwardDefine stability from both a kinetic and thermodynamic perspective. Give examples to show the differences in these concepts.arrow_forwardThe plot below shows the number of collisions with a particular energy for two different temperatures. a. Which is greater, T2 or T1? How can you tell? b. What does this plot tell us about the temperature of the rate of a chemical reaction? Explain your answer.arrow_forward
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStax
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning