(a)
Interpretation:
For the given reaction, the rate law has to be given.
Concept introduction:
Rate law:
It is an equation that related to the dependence of the reaction rate on the concentration of each substrates (reactants).
(b)
Interpretation:
For the given reaction, the value of rate constant with its unit has to be given.
Concept introduction:
Rate law:
It is an equation that related to the dependence of the reaction rate on the concentration of each substrates (reactants).
(c)
Interpretation:
For the given reaction, the initial rate has to be calculated when the initial concentration of both reactants are
Concept introduction:
Rate law:
It is an equation that related to the dependence of the reaction rate on the concentration of each substrates (reactants).
Want to see the full answer?
Check out a sample textbook solutionChapter 12 Solutions
General Chemistry: Atoms First
- The label on a bottle of 3% (by volume) hydrogen peroxide, H2O2, purchased at a grocery store, states that the solution should be stored in a cool, dark place. H2O2decomposes slowly over time, and the rate of decomposition increases with an increase in temperature and in the presence of light. However, the rate of decomposition increases dramatically if a small amount of powdered MnO- is added to the solution. The decomposition products are H2O and O2. MnO2 is not consumed in the reaction. Write the equation for the decomposition of H2O2. What role does MnO2 play? In the chemistry lab, a student substituted a chunk of MnO2 for the powdered compound. The reaction rate was not appreciably increased. WTiat is one possible explanation for this observation? Is MnO2 part of the stoichiometry of the decomposition of H2O2?arrow_forwardThe Raschig reaction produces the industrially important reducing agent hydrazine, N2H4, from ammonia, NH3, and hypochlorite ion, OCl−, in basic aqueous solution. A proposed mechanism is Step 1: Step 2: Step 3: What is the overall stoichiometric equation? Which step is rate-limiting? What reaction intermediates are involved? What rate law is predicted by this mechanism?arrow_forwardOne experimental procedure that can be used to determine the rate law of a reaction is the method of initial rates. What data are gathered in the method of initial rates, and how are these data manipulated to determine k and the orders of the species in the rate law? Are the units for k. the rate constant, the same for all rate laws? Explain. If a reaction is first order in A, what happens to the rate if [A] is tripled? If the initial rate for a reaction increases by a factor of 16 when [A] is quadrupled, what is the order of n? If a reaction is third order in A and [A] is doubled, what happens to the initial rate? If a reaction is zero order, what effect does [A] have on the initial rate of a reaction?arrow_forward
- Consider the following reaction: 2 NO(g) + 2 H2(g) N2(g) + 2 H2O(g) (a) The rate law for this reaction is second order in NO(g) and first-order in H2(g). What is the rate law for this reaction? (b) If the rate constant for this reaction at a certain temperature is 9.70e+04, what is the reaction rate when [NO(g)] = 0.0560 M and [H2(g)] = 0.119 M?Rate = M/s.(c) What is the reaction rate when the concentration of NO(g) is doubled, to 0.112 M while the concentration of H2(g) is 0.119 M?Rate = M/sarrow_forward(a) For a reaction, A + B > Product, the rate law is given by,Rate = k [A]1 [B]2 . What is the order of reaction?(b) Write the unit of rate constat ‘k’ for the first order reaction.arrow_forwardThe reaction 2 NO(g) + Cl2(g) → 2 NOCl has the following rate law: Rate = k[NO]2 [Cl2]. The initial speed of the reaction was found to be 5.72×10‒6 M/s when the reaction was carried out at 25 °C with initial concentrations of 0.500 M NO and 0.250 M Cl2. What is the value of k?(a) 1.83×10‒4(b) 1.09×104(c) 9.15×10‒5(d) 5.72×10‒6arrow_forward
- The initial rate of the reaction is determined for different initial conditions, with the results listed in the table. (a) What is the overall reaction order? (b) What is the value of the rate constant, karrow_forwardYou perform a series of experiments for the reactionA----->B + C and find that the rate law has the formrate = k[A]x. Determine the value of x in each of the followingcases: (a) There is no rate change when [A]0 is tripled.(b) The rate increases by a factor of 9 when [A]0 is tripled.(c) When [A]0 is doubled, the rate increases by a factor of 8.arrow_forwardThe following data was obtained from the reaction: (a) Determine the rate law. (b) Calculate the rate constant. (c) Calculate the initial rate, if [NO2~] = 0.1 M and [NH4+] = 0.1 Marrow_forward
- Assume that the formation of nitrogen dioxide: 2NO(g) + O2(g) 2NO2(g) is an elementary reaction. (a) Write the rate law for this reaction. (b) A sample of air at a certain temperature is contaminated with 2.0 ppm of NO by volume. Under these conditions, can the rate law be simplified? If so, write the simplified rate law. (c) Under the conditions described in part (b), the half-life of the reaction has been estimated to be 6.4 × 103 min. What would the half-life be if the initial concentration of NO were 10 ppm?arrow_forward(a) For a reaction, A + B → Product, the rate law is given by, Rate = k[A]1[B]2. What is the order of the reaction?(b) Write the unit of rate constant ‘k’ for the first order reaction.arrow_forwardConsider the following reaction: 2 NO(g) + 2 H2(g) N2(g) + 2 H2O(g) (a) The rate law for this reaction is second order in NO(g) and first order in H2(g). What is the rate law for this reaction?(b) If the rate constant for this reaction at a certain temperature is 79200, what is the reaction rate when [NO(g)] = 0.0852 M and [H2(g)] = 0.137 M?Rate =____ M/s.(c) What is the reaction rate when the concentration of NO(g) is doubled, to 0.170 M while the concentration of H2(g) is 0.137 M?Rate = ____ M/sarrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning