General Chemistry: Atoms First
2nd Edition
ISBN: 9780321809261
Author: John E. McMurry, Robert C. Fay
Publisher: Prentice Hall
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 12, Problem 12.137MP
Values of Ea = 6.3 kJ/mol and A = 6.0 × 108 M−1 s−1 have been measured for the bimolecular reaction:
- (a) Calculate the rate constant at 25 °C.
- (b) The product of the reaction is nitrosyl fluoride. Its formula is usually written as NOF, but its structure is actually ONF. Is the ONF molecule linear or bent?
- (c) Draw a plausible transition state for the reaction. Use dashed lines to indicate the atoms that are weakly linked together in the transition state.
- (d) Why does the reaction have such a low activation energy?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Consider these three reactions as the elementary steps in the mechanism for a chemical reaction.(i) Cl2 (g) + Pt (s) à 2Cl (g) + Pt (s) Ea = 1550 kJ ∆H = – 950 kJ(ii) Cl (g)+ CO (g) + Pt (s) à ClCO (g) + Pt (s) Ea = 2240 kJ ∆H = 575 kJ(iii) Cl (g) + ClCO (g) à Cl2CO (g) Ea = 2350 kJ ∆H = – 825 kJ
e. Which reaction intermediate would be considered a catalyst (if any) and why?f. If you were to add 2700kJ of activation energy to the reaction, would you be able to make thereaction reverse itself (i.e. have the products become reactants)? Justify your answer.g. If you were to added a positive catalyst to step (iii) what would the end result be? Justify yourprediction.h. Your friend is looking at your graph and states that she believes that step (ii) is the ratedetermining step. Do you agree with her? Justify your reasoning.
Consider these three reactions as the elementary steps in the mechanism for a chemical reaction.(i) Cl2 (g) + Pt (s) à 2Cl (g) + Pt (s) Ea = 1550 kJ ∆H = – 950 kJ(ii) Cl (g)+ CO (g) + Pt (s) à ClCO (g) + Pt (s) Ea = 2240 kJ ∆H = 575 kJ(iii) Cl (g) + ClCO (g) à Cl2CO (g) Ea = 2350 kJ ∆H = – 825 kJ
a. Draw the potential energy diagram for the reaction. Label the data points for clarity.The potential energy of the reactants is 600 kJ.
b. What is the overall chemical equation?
c. What is the overall change in enthalpy for the above chemical reaction?
d. What is the overall amount of activation energy for the above chemical reaction?
e. Which reaction intermediate would be considered a catalyst (if any) and why?
f. If you were to add 2700kJ of activation energy to the reaction, would you be able to make the reaction reverse itself (i.e. have the products become reactants)? Justify your answer.
g. If you were to added a positive catalyst to step (iii) what would the end result be? Justify…
Consider these three reactions as the elementary steps in the mechanism for a chemical reaction.(i) Cl2 (g) + Pt (s) à 2Cl (g) + Pt (s) Ea = 1550 kJ ∆H = – 950 kJ(ii) Cl (g)+ CO (g) + Pt (s) à ClCO (g) + Pt (s) Ea = 2240 kJ ∆H = 575 kJ(iii) Cl (g) + ClCO (g) à Cl2CO (g) Ea = 2350 kJ ∆H = – 825 kJ
e. Which reaction intermediate would be considered a catalyst (if any) and why?f. If you were to add 2700kJ of activation energy to the reaction, would you be able to make thereaction reverse itself (i.e. have the products become reactants)? Justify your answer.g. If you were to added a positive catalyst to step (iii) what would the end result be? Justify yourprediction. h. Your friend is looking at your graph and states that she believes that step (ii) is the ratedetermining step. Do you agree with her? Justify your reasoning.
Chapter 12 Solutions
General Chemistry: Atoms First
Ch. 12.1 - The oxidation of iodide ion by arsenic acid,...Ch. 12.1 - Prob. 12.2PCh. 12.2 - Consider the last two reactions in Table 12.2....Ch. 12.3 - The oxidation of iodide ion by hydrogen peroxide...Ch. 12.3 - Prob. 12.5PCh. 12.3 - Prob. 12.6CPCh. 12.4 - Prob. 12.7PCh. 12.4 - Prob. 12.8PCh. 12.5 - Prob. 12.9PCh. 12.5 - Prob. 12.10CP
Ch. 12.6 - Prob. 12.11PCh. 12.6 - Prob. 12.12PCh. 12.6 - Prob. 12.13PCh. 12.6 - Prob. 12.14PCh. 12.7 - Prob. 12.15PCh. 12.9 - Prob. 12.16CPCh. 12.10 - Prob. 12.17PCh. 12.11 - Prob. 12.18PCh. 12.12 - Prob. 12.19PCh. 12.13 - Prob. 12.20PCh. 12.13 - Prob. 12.21PCh. 12.14 - Prob. 12.22CPCh. 12.15 - Prob. 12.23PCh. 12 - The following reaction is first order in A (red...Ch. 12 - Consider the first-order decomposition of A...Ch. 12 - Prob. 12.26CPCh. 12 - The following pictures represent the progress of...Ch. 12 - Prob. 12.28CPCh. 12 - Prob. 12.29CPCh. 12 - The relative rates of the reaction A + B AB in...Ch. 12 - Prob. 12.31CPCh. 12 - Prob. 12.32CPCh. 12 - Prob. 12.33CPCh. 12 - Prob. 12.34SPCh. 12 - Prob. 12.35SPCh. 12 - Prob. 12.36SPCh. 12 - Prob. 12.37SPCh. 12 - Prob. 12.38SPCh. 12 - Prob. 12.39SPCh. 12 - Prob. 12.40SPCh. 12 - The oxidation of 2-butanone (CH3COC2H5) by the...Ch. 12 - Prob. 12.42SPCh. 12 - The reaction 2 NO(g) + 2 H2(g) N2(g) + 2 H2O(g)...Ch. 12 - Bromomethane is converted to methanol in an...Ch. 12 - The oxidation of Br by BRO3, in acidic solution is...Ch. 12 - Prob. 12.46SPCh. 12 - Prob. 12.47SPCh. 12 - Prob. 12.48SPCh. 12 - Prob. 12.49SPCh. 12 - The initial rates listed in the following table...Ch. 12 - Prob. 12.51SPCh. 12 - Prob. 12.52SPCh. 12 - The rearrangement of methyl isonitrile (CH3NC) to...Ch. 12 - Prob. 12.54SPCh. 12 - What is the half-life (in hours) of the reaction...Ch. 12 - Prob. 12.56SPCh. 12 - Prob. 12.57SPCh. 12 - Prob. 12.58SPCh. 12 - What is the half-life (in days) of the reaction in...Ch. 12 - Prob. 12.60SPCh. 12 - Prob. 12.61SPCh. 12 - Prob. 12.62SPCh. 12 - Prob. 12.63SPCh. 12 - Prob. 12.64SPCh. 12 - Prob. 12.65SPCh. 12 - Prob. 12.66SPCh. 12 - Prob. 12.67SPCh. 12 - Prob. 12.68SPCh. 12 - Prob. 12.69SPCh. 12 - Prob. 12.70SPCh. 12 - Prob. 12.71SPCh. 12 - Prob. 12.72SPCh. 12 - Prob. 12.73SPCh. 12 - Prob. 12.74SPCh. 12 - Prob. 12.75SPCh. 12 - Prob. 12.76SPCh. 12 - Prob. 12.77SPCh. 12 - Prob. 12.78SPCh. 12 - Prob. 12.79SPCh. 12 - Rate constants for the reaction NO2(g) + CO(g) ...Ch. 12 - Prob. 12.81SPCh. 12 - Prob. 12.82SPCh. 12 - Prob. 12.83SPCh. 12 - Prob. 12.84SPCh. 12 - Prob. 12.85SPCh. 12 - Prob. 12.86SPCh. 12 - Prob. 12.87SPCh. 12 - Prob. 12.88SPCh. 12 - Prob. 12.89SPCh. 12 - Prob. 12.90SPCh. 12 - Prob. 12.91SPCh. 12 - Prob. 12.92SPCh. 12 - Prob. 12.93SPCh. 12 - The reaction 2 NO2(g) + F2(g) 2 NO2F(g) has a...Ch. 12 - Prob. 12.95SPCh. 12 - Prob. 12.96SPCh. 12 - Prob. 12.97SPCh. 12 - Prob. 12.98SPCh. 12 - Prob. 12.99SPCh. 12 - Prob. 12.100SPCh. 12 - Sulfur dioxide is oxidized to sulfur trioxide in...Ch. 12 - Consider the following mechanism for the...Ch. 12 - Prob. 12.103SPCh. 12 - Prob. 12.104CHPCh. 12 - Prob. 12.105CHPCh. 12 - Prob. 12.106CHPCh. 12 - Consider three reactions with different values of...Ch. 12 - Prob. 12.108CHPCh. 12 - Prob. 12.109CHPCh. 12 - Prob. 12.110CHPCh. 12 - When the temperature of a gas is raised by 10 C,...Ch. 12 - Prob. 12.112CHPCh. 12 - Prob. 12.113CHPCh. 12 - Prob. 12.114CHPCh. 12 - Prob. 12.115CHPCh. 12 - Prob. 12.116CHPCh. 12 - Prob. 12.117CHPCh. 12 - Prob. 12.118CHPCh. 12 - Consider the following concentrationtime data for...Ch. 12 - Prob. 12.120CHPCh. 12 - Prob. 12.121CHPCh. 12 - Prob. 12.122CHPCh. 12 - Prob. 12.123CHPCh. 12 - Assume that you are studying the first-order...Ch. 12 - Prob. 12.125CHPCh. 12 - Prob. 12.126CHPCh. 12 - Prob. 12.127CHPCh. 12 - Prob. 12.128CHPCh. 12 - Use the following initial rate data to determine...Ch. 12 - Prob. 12.130CHPCh. 12 - The following experimental data were obtained in a...Ch. 12 - Prob. 12.132CHPCh. 12 - Prob. 12.133CHPCh. 12 - Prob. 12.134CHPCh. 12 - Prob. 12.135CHPCh. 12 - Polytetrafluoroethylene (Teflon) decomposes when...Ch. 12 - Values of Ea = 6.3 kJ/mol and A = 6.0 108 M1 s1...Ch. 12 - Prob. 12.138MPCh. 12 - The rate constant for the decomposition of gaseous...Ch. 12 - Prob. 12.140MPCh. 12 - Prob. 12.141MPCh. 12 - Prob. 12.142MPCh. 12 - Prob. 12.143MP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- The decomposition of phosphine, a very toxic gas, forms phosphorus and hydrogen in the following reaction: 4PH3(g) -> P4(g)+ 6H2(g) (a) Express the rate of the reaction with respect to each of the reactants and products.(b) if the instantaneous rate of the reaction with respect to PH3 is 0.34 M•S^-1 ,what is the instantaneous rate of the reaction?arrow_forwardConsider these three reactions as the elementary steps in the mechanism for a chemical reaction. (i) H2(g) + NO(g) à H2O(g) + N(g) Ea = 436 kJ ∆H = –491 kJ (ii) N(g) + NO(g) à N2(g) + O(g) Ea = 625 kJ ∆H = –312 kJ (iii) O(g) + H2(g) à H2O(g) Ea = 1690 kJ ∆H = +131 kJ Draw the potential energy diagram for the reaction. Assume the potential energy of the reactants was 1400 kJarrow_forwardConsider these three reactions as the elementary steps in the mechanism for a chemical reaction. (i) H2(g) + NO(g) à H2O(g) + N(g) Ea = 436 kJ ∆H = –491 kJ (ii) N(g) + NO(g) à N2(g) + O(g) Ea = 625 kJ ∆H = –312 kJ ( iii) O(g) + H2(g) à H2O(g) Ea = 1690 kJ ∆H = +131 kJ What is the ∆H for the overall reaction? Overall, is it endothermic or exothermic?arrow_forward
- Consider these three reactions as the elementary steps in the mechanism for a chemical reaction. (i) H2(g) + NO(g) à H2O(g) + N(g) Ea = 436 kJ ∆H = –491 kJ (ii) N(g) + NO(g) à N2(g) + O(g) Ea = 625 kJ ∆H = –312 kJ (iii) O(g) + H2(g) à H2O(g) Ea = 1690 kJ ∆H = +131 kJ What is Ea for the overall reaction? You must calculate this from the potential energy diagram.arrow_forwardIf you have any specific questions or if you need assistance with something related to the topics that start with the letters "d" to "f,"arrow_forwardThe decomposition reaction on N2O5 in carbon tetrachloride is 2 N2 O5-----> 4NO2 + O2. The rate law is first order in N2O5. At 64 °C the rate constant is 4.82 X 10-3s-1 (a) write the rate law for the reaction. (b) what is the rate when the concentration of N2O5 is doubled from 0.0240 M to 0.0480 M? Group of answer choices A) (a) rate= k[N2O5] (b) the rate doubles to 1.16 x 10E(-4) M/sec B.) (a) rate= k[N2O5] (b) the rate is halved to 5.8 x 10E(-5) M/sec C.) (a) rate= k[N2O5] (b) the rate doubles to 2.32 x 10E(-4) M/sec D.) (a) rate= k[N2O5]0 (b) the rate stays the samearrow_forward
- 25. For the reaction, 2H₂S(g) + O₂(g) → 2S(s) + 2H₂O(), which one of the following statements is absolutely true? (a) The reaction is first order with respect to H₂S and second order with respect to 02. (b) The reaction is fourth order overall. (c) The rate law is: rate = K[H₂S]²[0₂]. (d) The rate law is: rate = k[H₂S][0₂]. (e) The rate law cannot be determined from the information given.arrow_forwardFor the reaction BrO3– + 5Br–+ 6H+ → 3Br2 + 3H2O at a particular time, –Δ[BrO3–]/Δt = 1.5 × 10–2 M/s. What is –Δ[Br–]/Δt at the same instant?arrow_forwardConsider the following hypothetical reaction: 2P + Q→ 2 R + S. The following mechanism is proposed for this reaction: P + P = T (fast) Q + T → R+ U (slow) U-R + S (fast) Substances T and U are unstable intermediates. What rate law is predicted by this mechanism? (a) Rate = k[P]? (b) Rate = k[P][Q] (c) Rate = k[P]°[QI (d) Rate = k[P][Q? (e) Rate = k[U]arrow_forward
- The combustion of ammonia is shown below: 4NH:(g) + 50:(g) → 4NO(g) + 6H20(g) Write an equation that relates the rates of consumption of the reactants and the rates of formation of the products. At 298 °C, the rate of reaction (v) is 2.7 x 10 mol L-'s. Find the rate change of NH3, O2, NO and H20. (ii)arrow_forwardPlease answer the following.arrow_forwardThe hydrolysis of sucrose (C12H22O11)(C12H22O11) into glucose and fructose in acidic water has a rate constant of 1.8×10−4s−11.8×10−4s−1 at 25 ∘C∘C.Assuming the reaction is first order in sucrose, determine the mass of sucrose that is hydrolyzed when 2.65 LL of a 0.150 mol⋅L−1mol⋅L−1 sucrose solution is allowed to react for 195 minutes.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemical Principles in the LaboratoryChemistryISBN:9781305264434Author:Emil Slowinski, Wayne C. Wolsey, Robert RossiPublisher:Brooks ColeChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Chemical Principles in the Laboratory
Chemistry
ISBN:9781305264434
Author:Emil Slowinski, Wayne C. Wolsey, Robert Rossi
Publisher:Brooks Cole
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Kinetics: Initial Rates and Integrated Rate Laws; Author: Professor Dave Explains;https://www.youtube.com/watch?v=wYqQCojggyM;License: Standard YouTube License, CC-BY