(a)
Interpretation:
For the given reaction, balanced chemical equation has to be given.
Concept introduction:
Balanced chemical equation:
The mass of products should be equal to mass of its starting materials this is governed by law of conservation of mass.
(b)
Interpretation:
For the given reaction, the order of the reaction with respect to A, B and C and overall order of the reaction has to be given.
(c)
Interpretation:
For the given reaction, the rate law has to be given.
Concept introduction:
Rate law of a reaction:
It is an equation that related to the dependence of the reaction rate on the concentration of each substrates (reactants).
(d)
Interpretation:
In the given reaction, whether catalyst involved or not has to be checked.
(e)
Interpretation:
For the given reaction, the reaction mechanism has to be given.
(f)
Interpretation:
For the given reaction, the value of rate constant has to be calculated.
Concept introduction:
Rate law of a reaction:
It is an equation that related to the dependence of the reaction rate on the concentration of each substrates (reactants).
Want to see the full answer?
Check out a sample textbook solutionChapter 12 Solutions
General Chemistry: Atoms First
- . find the rate law predicted for a particular reaction mechanism.arrow_forwardThe hydrolysis of the sugar sucrose to the sugars glucose and fructose, C12H22O11+H2OC6H12O6+C6H12O6 follows a first-order rate equation for the disappearance of sucrose: Rate =k[C12H22O11] (The products of the reaction, glucose and fructose, have the same molecular formulas but differ in the arrangement of the atoms in their molecules.) (a) In neutral solution, k=2.11011s1 at 27 C and 8.51011s1 at 37 C. Determine the activation energy, the frequency factor, and the rate constant for this equation at 47 C (assuming the kinetics remain consistent with the Arrhenius equation at this temperature). (b) When a solution of sucrose with an initial concentration of 0.150 M reaches equilibrium, the concentration of sucrose is 1.65107M . How long will it take the solution to reach equilibrium at 27 C in the absence of a catalyst? Because the concentration of sucrose at equilibrium is so low, assume that the reaction is irreversible. (c) Why does assuming that the reaction is irreversible simplify the calculation in pan (b)?arrow_forwardFor this reaction mechanism, write the chemical equation for the overall reaction. write the rate law for the reaction. is there a catalyst involved in this reaction? If so, what is it? identify all intermediates in the reaction. draw a reaction energy diagram for the reaction.arrow_forward
- . Account for the increase in reaction rate brought about by a catalyst.arrow_forwardOne possible mechanism for the decomposition of nitryl chloride, NO2CI, is What is the overall reaction? What rate law would be derived from this mechanism? What effect does increasing the concentration of the product NO2 have on the reaction rate?arrow_forwardGive at least two physical properties that might be used to determine the rate of a reaction.arrow_forward
- Sulfonation of benzene has the following mechanism:(a) Write an overall equation for the reaction.(b) Write the overall rate law for the initial rate of the reaction.arrow_forwardFor the reaction: 2N2O5(g) -->4NO(g) + O2(g) (a) write the mathematical rate expression in terms of (i) the disappearance of N2O5 (Reactant); (ii) the formation of NO (Product); (iii) the formation of O2 (Product). (b) What are the stoichiometric relationships (rationalization) of the various rates for this reaction? (e.g. Product C formation is 2x faster than Reactant A disappearance/decomposition.) For the reaction: 5 Br-(aq) + BrO3-(aq) + 6 H+(aq)--> 3 Br2(aq) + 3 H2O(l); (a) write the expressions of the reaction rates mathematically in terms of (i) the disappearance of Br- (Reactant); (ii) the disappearance of BrO3- (Reactant), and (iii) the formation of Br2 (Product). (b) What are the stoichiometric relationships (rationalization) of the various rates for this reaction? (e.g. Product C formation is 2x faster than Reactant A…arrow_forwardThe reaction 2 ClO2(aq) + 2 OH- (aq)--->ClO3- (aq) +ClO2- (aq) + H2o(l) was studied with the followingresults: (a) Determine the rate law for the reaction. (b) Calculatethe rate constant with proper units. (c) Calculate the ratewhen [ClO2] = 0.100 M and [OH- ] = 0.050 M.arrow_forward
- Consider the reaction A + B ¡ C + D. Is each of the following statements true or false? (a) The rate law for the reaction must be Rate = k3A43B4. (b) If the reaction is an elementary reaction, the rate law is second order. (c) If the reaction is an elementary reaction, the rate law of the reverse reaction is first order. (d) The activation energy for the reverse reaction must be greater than that for the forward reaction.arrow_forwardConsider the following reaction: 2 NO(g) + 2 H2(g) N2(g) + 2 H2O(g) (a) The rate law for this reaction is second order in NO(g) and first order in H2(g). What is the rate law for this reaction?(b) If the rate constant for this reaction at a certain temperature is 79200, what is the reaction rate when [NO(g)] = 0.0852 M and [H2(g)] = 0.137 M?Rate =____ M/s.(c) What is the reaction rate when the concentration of NO(g) is doubled, to 0.170 M while the concentration of H2(g) is 0.137 M?Rate = ____ M/sarrow_forwardThe isomerization of cyclopropane, C3H6, to propylene, CH2=CHCH3, is first order in cyclopropane and first order overall. At 1000oC, the rate constant is 9.2/s. (a) What is the half-life of cyclopropane at 1000oC? (b) How long would it take for the concentration of cyclopropane to decrease to 50% of its initial value? (c) To 25% of its initial value?arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStax