General Chemistry: Atoms First
2nd Edition
ISBN: 9780321809261
Author: John E. McMurry, Robert C. Fay
Publisher: Prentice Hall
expand_more
expand_more
format_list_bulleted
Question
Chapter 12, Problem 12.71SP
Interpretation Introduction
Interpretation:
The number of
Concept Introduction:
Half-life period: It is the time required for the reactant (substrate) concentration reduces to one-half of its initial concentration.
Where,
Remaining
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 12 Solutions
General Chemistry: Atoms First
Ch. 12.1 - The oxidation of iodide ion by arsenic acid,...Ch. 12.1 - Prob. 12.2PCh. 12.2 - Consider the last two reactions in Table 12.2....Ch. 12.3 - The oxidation of iodide ion by hydrogen peroxide...Ch. 12.3 - Prob. 12.5PCh. 12.3 - Prob. 12.6CPCh. 12.4 - Prob. 12.7PCh. 12.4 - Prob. 12.8PCh. 12.5 - Prob. 12.9PCh. 12.5 - Prob. 12.10CP
Ch. 12.6 - Prob. 12.11PCh. 12.6 - Prob. 12.12PCh. 12.6 - Prob. 12.13PCh. 12.6 - Prob. 12.14PCh. 12.7 - Prob. 12.15PCh. 12.9 - Prob. 12.16CPCh. 12.10 - Prob. 12.17PCh. 12.11 - Prob. 12.18PCh. 12.12 - Prob. 12.19PCh. 12.13 - Prob. 12.20PCh. 12.13 - Prob. 12.21PCh. 12.14 - Prob. 12.22CPCh. 12.15 - Prob. 12.23PCh. 12 - The following reaction is first order in A (red...Ch. 12 - Consider the first-order decomposition of A...Ch. 12 - Prob. 12.26CPCh. 12 - The following pictures represent the progress of...Ch. 12 - Prob. 12.28CPCh. 12 - Prob. 12.29CPCh. 12 - The relative rates of the reaction A + B AB in...Ch. 12 - Prob. 12.31CPCh. 12 - Prob. 12.32CPCh. 12 - Prob. 12.33CPCh. 12 - Prob. 12.34SPCh. 12 - Prob. 12.35SPCh. 12 - Prob. 12.36SPCh. 12 - Prob. 12.37SPCh. 12 - Prob. 12.38SPCh. 12 - Prob. 12.39SPCh. 12 - Prob. 12.40SPCh. 12 - The oxidation of 2-butanone (CH3COC2H5) by the...Ch. 12 - Prob. 12.42SPCh. 12 - The reaction 2 NO(g) + 2 H2(g) N2(g) + 2 H2O(g)...Ch. 12 - Bromomethane is converted to methanol in an...Ch. 12 - The oxidation of Br by BRO3, in acidic solution is...Ch. 12 - Prob. 12.46SPCh. 12 - Prob. 12.47SPCh. 12 - Prob. 12.48SPCh. 12 - Prob. 12.49SPCh. 12 - The initial rates listed in the following table...Ch. 12 - Prob. 12.51SPCh. 12 - Prob. 12.52SPCh. 12 - The rearrangement of methyl isonitrile (CH3NC) to...Ch. 12 - Prob. 12.54SPCh. 12 - What is the half-life (in hours) of the reaction...Ch. 12 - Prob. 12.56SPCh. 12 - Prob. 12.57SPCh. 12 - Prob. 12.58SPCh. 12 - What is the half-life (in days) of the reaction in...Ch. 12 - Prob. 12.60SPCh. 12 - Prob. 12.61SPCh. 12 - Prob. 12.62SPCh. 12 - Prob. 12.63SPCh. 12 - Prob. 12.64SPCh. 12 - Prob. 12.65SPCh. 12 - Prob. 12.66SPCh. 12 - Prob. 12.67SPCh. 12 - Prob. 12.68SPCh. 12 - Prob. 12.69SPCh. 12 - Prob. 12.70SPCh. 12 - Prob. 12.71SPCh. 12 - Prob. 12.72SPCh. 12 - Prob. 12.73SPCh. 12 - Prob. 12.74SPCh. 12 - Prob. 12.75SPCh. 12 - Prob. 12.76SPCh. 12 - Prob. 12.77SPCh. 12 - Prob. 12.78SPCh. 12 - Prob. 12.79SPCh. 12 - Rate constants for the reaction NO2(g) + CO(g) ...Ch. 12 - Prob. 12.81SPCh. 12 - Prob. 12.82SPCh. 12 - Prob. 12.83SPCh. 12 - Prob. 12.84SPCh. 12 - Prob. 12.85SPCh. 12 - Prob. 12.86SPCh. 12 - Prob. 12.87SPCh. 12 - Prob. 12.88SPCh. 12 - Prob. 12.89SPCh. 12 - Prob. 12.90SPCh. 12 - Prob. 12.91SPCh. 12 - Prob. 12.92SPCh. 12 - Prob. 12.93SPCh. 12 - The reaction 2 NO2(g) + F2(g) 2 NO2F(g) has a...Ch. 12 - Prob. 12.95SPCh. 12 - Prob. 12.96SPCh. 12 - Prob. 12.97SPCh. 12 - Prob. 12.98SPCh. 12 - Prob. 12.99SPCh. 12 - Prob. 12.100SPCh. 12 - Sulfur dioxide is oxidized to sulfur trioxide in...Ch. 12 - Consider the following mechanism for the...Ch. 12 - Prob. 12.103SPCh. 12 - Prob. 12.104CHPCh. 12 - Prob. 12.105CHPCh. 12 - Prob. 12.106CHPCh. 12 - Consider three reactions with different values of...Ch. 12 - Prob. 12.108CHPCh. 12 - Prob. 12.109CHPCh. 12 - Prob. 12.110CHPCh. 12 - When the temperature of a gas is raised by 10 C,...Ch. 12 - Prob. 12.112CHPCh. 12 - Prob. 12.113CHPCh. 12 - Prob. 12.114CHPCh. 12 - Prob. 12.115CHPCh. 12 - Prob. 12.116CHPCh. 12 - Prob. 12.117CHPCh. 12 - Prob. 12.118CHPCh. 12 - Consider the following concentrationtime data for...Ch. 12 - Prob. 12.120CHPCh. 12 - Prob. 12.121CHPCh. 12 - Prob. 12.122CHPCh. 12 - Prob. 12.123CHPCh. 12 - Assume that you are studying the first-order...Ch. 12 - Prob. 12.125CHPCh. 12 - Prob. 12.126CHPCh. 12 - Prob. 12.127CHPCh. 12 - Prob. 12.128CHPCh. 12 - Use the following initial rate data to determine...Ch. 12 - Prob. 12.130CHPCh. 12 - The following experimental data were obtained in a...Ch. 12 - Prob. 12.132CHPCh. 12 - Prob. 12.133CHPCh. 12 - Prob. 12.134CHPCh. 12 - Prob. 12.135CHPCh. 12 - Polytetrafluoroethylene (Teflon) decomposes when...Ch. 12 - Values of Ea = 6.3 kJ/mol and A = 6.0 108 M1 s1...Ch. 12 - Prob. 12.138MPCh. 12 - The rate constant for the decomposition of gaseous...Ch. 12 - Prob. 12.140MPCh. 12 - Prob. 12.141MPCh. 12 - Prob. 12.142MPCh. 12 - Prob. 12.143MP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- The half-life of tritium, 3H, is 12.26 years. Tritium is the radioactive isotope of hydrogen. (a) What is the rate constant for the radioactive decay of tritium, in y1 and s1? (b) What percentage of the original tritium is left after 61.3 years?arrow_forwardThe radioactive isotope 64Cu is used in the form of copper(II) acetate to study Wilsons disease. The isotope has a half-life of 12.70 hours. What fraction of radioactive copper(II) acetate remains after 64 hours?arrow_forwardFluorine-18 is a radioactive isotope that decays by positron emission to form oxygen-18 with a half-life of 109.7 min. (A positron is a particle with the mass of an electron and a single unit of positive charge; the equation is F918O188+e+10 Physicians use 18F to study the brain by injecting a quantity of ?uoro-substituted glucose into the blood of a patient. The glucose accumulates in the regions where the brain is active and needs nourishment. (a) What is the rate constant for [lie decomposition of ?uorine-18? (b) If a sample of glucose containing radioactive fluorine-18 is injected into the blood, what percent of the radioactivity will remain after 5.59 h? (c) How long does it take for 99.99% of the 18F to decay?arrow_forward
- Both technetium-99 and thallium-201 are used to image heart muscle in patients with suspected heart problems. The half-lives are 6 h and 73 h, respectively. What percent of the radioactivity would remain for each of the isotopes after 2 days (48 h)?arrow_forward7-43 (Chemical Connections 7A and 7B) Why is a high fever dangerous? Why is a low body temperature dangerous?arrow_forwardTechnetium-99 is often used for assessing heart, liver, and lung damage because certain technetium compounds are absorbed by damaged tissues. It has a half-life of 6.0 h. Calculate the rate constant for the decay of T4399c.arrow_forward
- What is the half-life for the first-order decay of phosphorus-32? (P1532S1632+e) The rate constant for the decay is 4.85102 day-1.arrow_forwardAssuming that the mechanism for the hydrogenation of C2H4 given in Section 11-7 is correct, would you predict that the product of the reaction of C2H4. with D2 would be CH2DCH2D or CHD2CH3? How could the reaction of C2H4 with D2 be used to confirm the mechanism for the hydrogenation of C2H4 given in Section 11-7?arrow_forwardConsider this scenario and answer the following questions: Chlorine atoms resulting from decomposition of chloro?uoromethanes, such as CCI2F2, catalyze the decomposition of ozone in the atmosphere. One simplified mechanism for the decomposition is: O3sunlightO2+O O3+CIO2+CIO CIO+OCI+O2 (a) Explain why chlorine atoms are catalysts in the gas-phase transformation: 2O33O2 (b) Nitric oxide is also involved in the decomposition of ozone by the mechanism: O3sunlightO2+O O3+NONO2+O2 NO2+ONO+O2 Is NO a catalyst for the decomposition? Explain your answer.arrow_forward
- 11.17 Ammonia can react with oxygen to produce nitric oxide and water: 4NH3(g)+5O2(g)4NO(g)+6H2O(g) If the rate at which ammonia is consumed in a laboratory experiment is 4.23 ×10-4 mol L_1s_l, at what rate is oxygen consumed? At what rate is NO produced? At what rate is water vapor produced?arrow_forward11.44 A possible reaction for the degradation of the pesticide DDT to a less harmful compound was simulated in the laboratory. The reaction was found to be first order, with k = 4.0 X 10_H s"' at 25°C. What is the half-life for the degradation of DDT in this experiment, in years?arrow_forwardHydrogen peroxide (H20i) decomposes into water and oxygen: H,O2(aq) — H,O(f) + ^O2(g) Ordinarily this reaction proceeds rather slowly, hut in the presence of some iodide ions (I-), the decomposition is much faster. Ihe decomposition in the presence of iodide was studied at 20°C, and the data were plotted in various ways. Use the graphs below to answer the questions that follow. What is the order of reaction for the decomposition of hydrogen peroxide? Find the numerical value of the rate constant at 20°C, including the correct units. Obtain an estimate of the initial rate of reaction in the experiment that produced the graphs (i.e., the rate at t = 0 in the graphs).arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning
- Chemistry for Engineering StudentsChemistryISBN:9781285199023Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning
Chemistry by OpenStax (2015-05-04)
Chemistry
ISBN:9781938168390
Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark Blaser
Publisher:OpenStax
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Chemistry for Engineering Students
Chemistry
ISBN:9781285199023
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Kinetics: Initial Rates and Integrated Rate Laws; Author: Professor Dave Explains;https://www.youtube.com/watch?v=wYqQCojggyM;License: Standard YouTube License, CC-BY