Thermodynamics: An Engineering Approach
8th Edition
ISBN: 9780073398174
Author: Yunus A. Cengel Dr., Michael A. Boles
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 11.10, Problem 84P
An absorption refrigeration system receives heat from a source at 120°C and maintains the refrigerated space at 4°C. If the temperature of the environment is 25°C, what is the maximum COP this absorption refrigeration system can have?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A refrigerant 12 refrigeration system requires a load of 50 kW at an evaporator pressure of 270 kPa and a condenser pressure of 1000 kPa. The refrigerant is subcooled 10 degrees before entering the expansion valve and vapor is superheated 14 degrees before entering the compressor. Determine the
Work of compressor
Heat rejected
Refrigerating Effect
COP
Using T and S diagram and this table https://www.docdroid.net/JaBMibo/refrigerant-134a-1-pdf
Fill in the blanks:
A refrigeration system operates on an ideal vapor compression using R-134a with an evaporator temperature of -30°C and a
condenser exit temperature of 46°C and requires a 74.6 kW motor to drive the compressor. What is the capacity of the refrigerator in
TOR? Use the properties of R-134a from refrigerants' table.
ToR
please provide full calculations thank you
Chapter 11 Solutions
Thermodynamics: An Engineering Approach
Ch. 11.10 - Why is the reversed Carnot cycle executed within...Ch. 11.10 - Why do we study the reversed Carnot cycle even...Ch. 11.10 - 11–3 A steady-flow Carnot refrigeration cycle uses...Ch. 11.10 - Does the ideal vapor-compression refrigeration...Ch. 11.10 - Why is the throttling valve not replaced by an...Ch. 11.10 - It is proposed to use water instead of...Ch. 11.10 - In a refrigeration system, would you recommend...Ch. 11.10 - Does the area enclosed by the cycle on a T-s...Ch. 11.10 - Consider two vapor-compression refrigeration...Ch. 11.10 - The COP of vapor-compression refrigeration cycles...
Ch. 11.10 - An ice-making machine operates on the ideal...Ch. 11.10 - A 10-kW cooling load is to be served by operating...Ch. 11.10 - 11–13 An ideal vapor-compression refrigeration...Ch. 11.10 - 11–14 Consider a 300 kJ/min refrigeration system...Ch. 11.10 - 11–16 Repeat Prob. 11–14 assuming an isentropic...Ch. 11.10 - 11–17 Refrigerant-134a enters the compressor of a...Ch. 11.10 - A commercial refrigerator with refrigerant-134a as...Ch. 11.10 - 11–19 Refrigcrant-134a enters the compressor of a...Ch. 11.10 - A refrigerator uses refrigerant-134a as the...Ch. 11.10 - The manufacturer of an air conditioner claims a...Ch. 11.10 - Prob. 23PCh. 11.10 - How is the second-law efficiency of a refrigerator...Ch. 11.10 - Prob. 25PCh. 11.10 - Prob. 26PCh. 11.10 - Prob. 27PCh. 11.10 - 11–28 Bananas are to be cooled from 28°C to 12°C...Ch. 11.10 - A vapor-compression refrigeration system absorbs...Ch. 11.10 - A refrigerator operating on the vapor-compression...Ch. 11.10 - A room is kept at 5C by a vapor-compression...Ch. 11.10 - Prob. 32PCh. 11.10 - 11–33 A refrigeration system operates on the ideal...Ch. 11.10 - When selecting a refrigerant for a certain...Ch. 11.10 - Consider a refrigeration system using...Ch. 11.10 - A refrigerant-134a refrigerator is to maintain the...Ch. 11.10 - A refrigerator that operates on the ideal...Ch. 11.10 - A heat pump that operates on the ideal...Ch. 11.10 - Do you think a heat pump system will be more...Ch. 11.10 - What is a water-source heat pump? How does the COP...Ch. 11.10 - Prob. 42PCh. 11.10 - Refrigerant-134a enters the condenser of a...Ch. 11.10 - Prob. 45PCh. 11.10 - A heat pump using refrigerant-134a heats a house...Ch. 11.10 - How does the COP of a cascade refrigeration system...Ch. 11.10 - A certain application requires maintaining the...Ch. 11.10 - Consider a two-stage cascade refrigeration cycle...Ch. 11.10 - Can a vapor-compression refrigeration system with...Ch. 11.10 - Prob. 52PCh. 11.10 - Prob. 53PCh. 11.10 - Repeat Prob. 1156 for a flash chamber pressure of...Ch. 11.10 - Prob. 56PCh. 11.10 - Prob. 57PCh. 11.10 - 11–58 Consider a two-stage cascade refrigeration...Ch. 11.10 - Prob. 59PCh. 11.10 - A two-evaporator compression refrigeration system...Ch. 11.10 - A two-evaporator compression refrigeration system...Ch. 11.10 - Repeat Prob. 1163E if the 30 psia evaporator is to...Ch. 11.10 - How does the ideal gas refrigeration cycle differ...Ch. 11.10 - Devise a refrigeration cycle that works on the...Ch. 11.10 - How is the ideal gas refrigeration cycle modified...Ch. 11.10 - Prob. 66PCh. 11.10 - How do we achieve very low temperatures with gas...Ch. 11.10 - 11–68E Air enters the compressor of an ideal gas...Ch. 11.10 - Prob. 69PCh. 11.10 - Air enters the compressor of an ideal gas...Ch. 11.10 - Repeat Prob. 1173 for a compressor isentropic...Ch. 11.10 - Prob. 73PCh. 11.10 - Prob. 74PCh. 11.10 - Prob. 75PCh. 11.10 - A gas refrigeration system using air as the...Ch. 11.10 - An ideal gas refrigeration system with two stages...Ch. 11.10 - Prob. 78PCh. 11.10 - Prob. 79PCh. 11.10 - What are the advantages and disadvantages of...Ch. 11.10 - Prob. 81PCh. 11.10 - Prob. 82PCh. 11.10 - An absorption refrigeration system that receives...Ch. 11.10 - An absorption refrigeration system receives heat...Ch. 11.10 - Heat is supplied to an absorption refrigeration...Ch. 11.10 - Prob. 86PCh. 11.10 - Prob. 87PCh. 11.10 - Prob. 88PCh. 11.10 - Prob. 89PCh. 11.10 - Consider a circular copper wire formed by...Ch. 11.10 - An iron wire and a constantan wire are formed into...Ch. 11.10 - Prob. 92PCh. 11.10 - Prob. 93PCh. 11.10 - Prob. 94PCh. 11.10 - Prob. 95PCh. 11.10 - Prob. 96PCh. 11.10 - Prob. 97PCh. 11.10 - Prob. 98PCh. 11.10 - A thermoelectric cooler has a COP of 0.18, and the...Ch. 11.10 - Prob. 100PCh. 11.10 - Prob. 101PCh. 11.10 - Prob. 102PCh. 11.10 - Prob. 103RPCh. 11.10 - Prob. 104RPCh. 11.10 - Prob. 105RPCh. 11.10 - A heat pump that operates on the ideal...Ch. 11.10 - A large refrigeration plant is to be maintained at...Ch. 11.10 - Repeat Prob. 11112 assuming the compressor has an...Ch. 11.10 - A heat pump operates on the ideal...Ch. 11.10 - An air conditioner with refrigerant-134a as the...Ch. 11.10 - An air conditioner operates on the...Ch. 11.10 - Consider a two-stage compression refrigeration...Ch. 11.10 - A two-evaporator compression refrigeration system...Ch. 11.10 - Prob. 116RPCh. 11.10 - Prob. 117RPCh. 11.10 - Prob. 118RPCh. 11.10 - Consider a regenerative gas refrigeration cycle...Ch. 11.10 - Prob. 120RPCh. 11.10 - The refrigeration system of Fig. P11122 is another...Ch. 11.10 - Repeat Prob. 11122 if the heat exchanger provides...Ch. 11.10 - An ideal gas refrigeration system with three...Ch. 11.10 - Derive a relation for the COP of the two-stage...Ch. 11.10 - Prob. 129FEPCh. 11.10 - Prob. 130FEPCh. 11.10 - Prob. 131FEPCh. 11.10 - Prob. 132FEPCh. 11.10 - An ideal vapor-compression refrigeration cycle...Ch. 11.10 - Prob. 134FEPCh. 11.10 - An ideal gas refrigeration cycle using air as the...Ch. 11.10 - Prob. 136FEPCh. 11.10 - Prob. 137FEPCh. 11.10 - Prob. 138FEP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Why is two-stage compression popular for extra-low-temperature refrigeration systems?arrow_forwardCondensers in these refrigerators are all_______cooled.arrow_forwardA two stage cascade refrigeration system uses R-12 in the high pressure loop with a condenser temperature of 300C and -100C in the cascade condenser, and R-22 in the low pressure loop with a temperature in the cascade condenser of 00C and an evaporator temperature of -30 0C. Given that, h6 = 366 kJ/kg; h2= 421 kJ/kg. Determine the amount of ice (kg)for a 10 hrs operation if the initial temp of water is 31 0C to ice at --80C. ANSWER: 7358.9169 kg A two stage cascade refrigeration system uses R-11 as the working substance. The evaporator is at -30 0C and the high pressure condenser is at 300C. The cascade condenser is a direct contact type. The refrigeration load is 24 tons. Given that, h2 = 393 kJ/kg; h6 = 408 kJ/kg. Determine the ff: a.) amount ofwater for a 10 hrs operation if the initial temp of water is 34 0C to 20C. ANSWER: 22656.8019kg b.) amount of cooling water needed for a temp rise of 130C. ANSWER: 1.9446 c.) heat…arrow_forward
- A simple saturated Refrigeration cycle for R-12 system operates at an evaporating temperature of -5°C and a condensing temperature of 40 C. Determine: a) refrigerating effect; b) The work of the compressor; c) The heat rejected in the system and d) The COParrow_forwardA refrigerant system with a capacity of 15 tons of refrigeration operates at 150 KPA evaporator while in the condenser is 1520 KPA if the refrigerant R-717 is in a saturated state calculate the theoretical power required to operate the compressor.arrow_forwardThermodynamics: A refrigeration unit using Refrigerant-134a is used to maintain a certain space at –15°C. The condenser rejects heat (?H) to cooling water that enters the condenser at 15°C at a rate of 0.2 kg/s and leaves at 35°C (all as saturated liquid water). The superheated refrigerant enters the condenser at 0.8 MPa and 40°C and leaves as a saturated liquid at the same temperature. If the compressor consumes 4.5 kW of power, determine (a) the mass flow rate of the refrigerant, (b) the refrigeration load (?̇L), (c) the COP.arrow_forward
- A refrigeration system with a capacity of 10 tons of refrigeration, operates at 210 kPa in the evaporator, while in the condenser it is 900 kPa. If R-134a refrigerant is in a saturated state, calculate the theoretical power required to operate the compressor. Compressor Power = W.arrow_forwardA refrigeration system using R-12 receives a load of 54 KW at an evaporator temperature of - 4 oC and a condenser temperature of 42 oC.Determine:a. Calculate the power required by the compressor in KW. b. If a liquid to suction heat exchanger is to be installed henceforth superheating the vapor refrigerant by 10 oC upon entering the compressor, what is the COP?arrow_forward750 kPa 800 kPa 55°C Condenser (3) Expansion valve Compressor Evaporator Figure 3 4. The liquid leaving the condenser of a 30 kW heat pump using refrigerant 134a as the working fluid is subcooled by 5.4°C. The condenser operates at 1 MPa and the evaporator at 0.4 MPa. How does this subcooling change the power required to drive the compressor as compared to an ideal vapour-compression refrigeration cycle? (3.41 kW, 3.25 kW)arrow_forward
- A refrigeration system with a capacity of 10 tons of refrigeration, operates at 210 kPa evaporator, while being condensed is 1240 kpa. If the refrigerator R-717 is saturated, calculate the theoretical power required to operate the compressor. compressor power =arrow_forwardConsider a refrigrator that operates on the vapor compression refrigeration cycle with R-134a as the working fluid. The refrigerant enters the compressor as saturated vapor at 100 kPa, and exits at 1000 kPa and 80°C, and leaves the condenser as saturated liquid at 1000 kPa. The coefficient of performance of this refrigrator is Lütfen birini seçin: a. 1.21 b. 1.87 c. 2.85 d. 1.59 e. 2.34arrow_forwardIn an ideal vapour-compression refrigeration cycle, refrigerant R-12 enters the compressor as a saturated vapour at −18 degree C and leaves the condenser as a saturated liquid at 25 degree C. The mass flow rate of the refrigerant is 0.5 kg/s, and the pressure drop in the evaporator and the condenser are negligible. Calculate: a) the refrigeration effect (rate of refrigeration or heat transfer rate in the evaporator) b)power consumed by the compressor c)the coefficient of performance of the refrigerator) d)qualityof the refrigerant after the expansion valve e)heat transfer rate in the condenserarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Refrigeration and Air Conditioning Technology (Mi...Mechanical EngineeringISBN:9781305578296Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill JohnsonPublisher:Cengage Learning
Refrigeration and Air Conditioning Technology (Mi...
Mechanical Engineering
ISBN:9781305578296
Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill Johnson
Publisher:Cengage Learning
The Refrigeration Cycle Explained - The Four Major Components; Author: HVAC Know It All;https://www.youtube.com/watch?v=zfciSvOZDUY;License: Standard YouTube License, CC-BY