(a)
The fraction of the refrigerant that evaporates as it is throttled to the flash chamber.
(a)
Answer to Problem 53P
The fraction of the refrigerant that evaporates as it is throttled to the flash chamber is
Explanation of Solution
Show the T-s diagram for compression refrigeration cycle as in Figure (1).
From Figure (1), write the specific enthalpy at state 5 is equal to state 6 due to throttling process.
Here, specific enthalpy at state 5 and 6 is
From Figure (1), write the specific enthalpy at state 7 is equal to state 8 due to throttling process.
Here, specific enthalpy at state 7 and 8 is
Express the fraction of the refrigerant that evaporates as it is throttled to the flash chamber
Here, specific enthalpy at saturated vapor is
Conclusion:
Perform unit conversion of pressure at state 1 from
Refer Table A-12, “saturated refrigerant-134a-pressure table”, and write the properties corresponding to pressure at state 1
Here, specific entropy and enthalpy at state 1 is
Refer Table A-13, “superheated refrigerant 134a”, and write the specific enthalpy at state 2 corresponding to pressure at state 2 of
Write the formula of interpolation method of two variables.
Here, the variables denote by x and y is specific entropy at state 2 and specific enthalpy at state 2 respectively.
Show the specific enthalpy at state 2 corresponding to specific entropy as in Table (1).
Specific entropy at state 2 |
Specific enthalpy at state 2 |
0.9306 | 256.59 |
0.9519 | |
0.9628 | 265.88 |
Substitute
Thus, the specific enthalpy at state 2 is,
Perform unit conversion of pressure at state 3 from
Refer Table A-12, “saturated refrigerant-134a-pressure table”, and write the property corresponding to pressure at state 3
Perform unit conversion of pressure at state 5 from
Refer Table A-12, “saturated refrigerant-134a-pressure table”, and write the property corresponding to pressure at state 5
Here, specific enthalpy at saturated liquid is
Substitute
Refer Table A-12, “saturated refrigerant-134a-pressure table”, and write the property corresponding to pressure at state 8
Substitute
Refer Table A-12, “saturated refrigerant-134a-pressure table”, and write the specific enthalpy at evaporation and pressure of
Substitute
Hence, the fraction of the refrigerant that evaporates as it is throttled to the flash chamber is
(b)
The rate of heat removed from the refrigerated space.
(b)
Answer to Problem 53P
The rate of heat removed from the refrigerated space is
Explanation of Solution
Express the enthalpy at state 9 by using an energy balance on the mixing chamber.
Here, the rate of total energy entering the system is
Express the mass flow rate through the flash chamber.
Here, mass flow rate through condenser is
Express The rate of heat removed from the refrigerated space.
Conclusion:
Substitute
Substitute
Substitute
Hence, the rate of heat removed from the refrigerated space is
(c)
The coefficient of performance.
(c)
Answer to Problem 53P
The coefficient of performance is
Explanation of Solution
Express compressor work input per unit mass.
Express the coefficient of performance.
Express entropy at state 4.
Here, specific entropy at state 3 is
Conclusion:
Refer Table A-12, “saturated refrigerant-134a-pressure table”, and write the property corresponding to pressure at state 3
Here, specific entropy at saturated vapor is
Substitute
Refer Table A-13, “superheated refrigerant 134a”, and write the specific enthalpy at state 4 corresponding to pressure at state 4 of
Show the specific enthalpy at state 4 corresponding to specific entropy as in Table (2).
Specific entropy at state 4 |
Specific enthalpy at state 4 |
0.9389 | 285.47 |
0.9436 | |
0.9733 | 297.10 |
Use excels and substitute value from Table (2) in Equation (IV) to get,
Substitute
Substitute
Hence, the coefficient of performance is
Want to see more full solutions like this?
Chapter 11 Solutions
Thermodynamics: An Engineering Approach
- Condensers in these refrigerators are all_______cooled.arrow_forwardWhen a standard-efficiency air-cooled condenser is used, the condensing refrigerant will normally be higher in temperature than the entering air temperature.arrow_forwardDetermine the degrees of subcooling at the exit of the condenser of a 2-ton air-conditioner system. The system operates on the ideal, vapor-compression refrigerationcycle with the following design parameters: R-134a flow rate 0.05 kg/s Evaporator Pressure 200 kPa Condenser Pressure 1200 kPaarrow_forward
- A vapor-compression refrigeration system uses R-134a. The evaporator pressure is 200.60 kPa and a condenser pressure of 770.20 kPa. The refrigerant enters the compressor as a saturated vapor and leaves the condenser as subcooled liquid at 20°C (there is subcooling from Tsatn to 20°C). Calculate the following: (a) The flowrate of R-134a in kg/s, if the refrigeration capacity is 35.5 kw (b) Work requirement in the compressor in kl/kg, if the compressor efficiency is 0.80 (c) COP of the refrigeration cycle. (d) Provide the P-H diagram of the cycle.arrow_forwardA heat pump operates on the ideal vapor-compression refrigeration cycle and uses refrigerant-134a as the working fluid. The condenser operates at 1400 kPa and the evaporator at 140 kPa. Determine this system's COP and the rate of heat supplied to the evaporator when the compressor consumes 7 kW. (Take the required values from saturated refrigerant-134a tables.) The COP of the system is and the rate of heat supplied to the evaporator is KM 4arrow_forwardvi) The vapour-compression heat pump system below uses a heat exchanger to superheat the vapour entering the compressor while sub-cooling the liquid exiting the condenser. The refrigerant used (R134a) is at -10.1°C in the evaporator and is sub-cooled by 11.3°C at the throttle valve entrance. If the condenser pressure is 800 kPa, the maximum temperature reached by the refrigerant throughout the cycle is closest to: Condenser Compressor Heat exchanger Throttle Evaporator work ratin narrow_forward
- 2. A cascade refrigeration system using R - 22 in the low - temperature circuit and ammonia (R-717) in the high - temperature circuit has a load of 150 kW. The low - temperature circuit operates at an evaporating temperature of -50°C and a condensing pressure of 500 kPa. Refrigerant leaves the low temperature evaporator as saturated vapor and enters the suction of the low - temperature compressor at - 45°C. Liquid refrigerant exits the condenser at 02°C. The high temperature circuit - operates at an evaporating temperature of -10°C and a condensing pressure of 1200 kPa. The refrigerant exits both evaporator and condenser at saturated conditions. Calculate the power input to the high temperature circuit - compressor, kW.arrow_forward3. A vapour compression refrigeration system of 2400 kJ/min capacity works at an evaporator temperature of 263 K and a condenser temperature of 303 K. The refrigerant used is R-12 and is subcooled by 6°C before entering the expansion valve and vapour is superheated by 7°C before leaving the evaporator coil. The compression of refrigerant is reversible adiabatic. The refrigeration compressor is two-cylinder, single acting with stroke equal to 1.25 times the bore and runs at 1000 r.p.m. Determine: 1. Refrigerating effect per kg ; 2. Mass of refrigerant circulated per minute ; 3. Theoretical piston displacement per minute; 4. Power required to run the com pressor; 5. Heat removed in through condenser; and 6. Bore and stroke of the compressor.arrow_forwardA food storage locker requires a refrigeration system of 2,400 kJ/min capacity at an evaporator temperature of -10OC and a condenser temperature of 30OC. The refrigerant used is freon-12 and sub-cooled by 6OC before entering the expansion valve and vapor is superheated by 7OC before leaving the evaporator coil. The compression of refrigerant is isentropic. The refrigeration compressor is two-cylinder, single-acting with stroke equal to 1.25 times the bore diameter and operates at 1000 rpm. Determine: (a) refrigerating effect, (b) mass of refrigerant to be circulated, (c) theoretical piston displacement per minute, (d) theoretical power to run the compressor in kW, (e) heat removed from the condenser per min. (f) theoretical bore and stroke of compressor.arrow_forward
- The required refrigeration capacity of a vapor compression refrigeration system (with R-22 as refrigerant) is 100 kW at –30oC evaporator temperature. Initially the system was single-stage with a single compressor compressing the refrigerant vapor from evaporator to a condenser operating at 1500 kPa pressure. Later the system was modified to a two- stage system operating on the cycle shown below. At the intermediate pressure of 600 kPa there is intercooling but no removal of flash gas. Find: a) Power requirement of the original single-stage system; b) Total power requirement of the two compressors in the revised two-stage system.arrow_forwardIn an ideal vapour-compression refrigeration cycle, refrigerant R-12 enters the compressor as a saturated vapour at −18 degree C and leaves the condenser as a saturated liquid at 25 degree C. The mass flow rate of the refrigerant is 0.5 kg/s, and the pressure drop in the evaporator and the condenser are negligible. Calculate: a) the refrigeration effect (rate of refrigeration or heat transfer rate in the evaporator) b)power consumed by the compressor c)the coefficient of performance of the refrigerator) d)qualityof the refrigerant after the expansion valve e)heat transfer rate in the condenserarrow_forwardAn ideal vapor-compression refrigeration cycle using refrigerant-134a as the working fluid is used to cool a brine solution to -5°C. This solution is pumped to various buildings for the purpose of air-conditioning. The refrigerant evaporates at -18°C with a total mass flow rate of 5 kg/s and condenses at 600 kPa. Determine the COP of the cycle and the total cooling load. (Take the required values from saturated refrigerant-134a tables.) The COP of the cycle is , and the total cooling load is kW.arrow_forward
- Refrigeration and Air Conditioning Technology (Mi...Mechanical EngineeringISBN:9781305578296Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill JohnsonPublisher:Cengage Learning