Thermodynamics: An Engineering Approach
8th Edition
ISBN: 9780073398174
Author: Yunus A. Cengel Dr., Michael A. Boles
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Textbook Question
thumb_up100%
Chapter 11.10, Problem 70P
Air enters the compressor of an ideal gas refrigeration cycle at 7°C and 35 kPa and the turbine at 37°C and 160 kPa. The mass flow rate of air through the cycle is 0.2 kg/s. Assuming variable specific heats for air, determine (a) the rate of refrigeration, (b) the net power input, and (c) the coefficient of performance.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A vapor compression refrigeration system is designed to have a capacity of 100 tons of refrigeration. It produces chilled water from 23C to 2C. Its actual coefficient of performance is 5.96 and 35% of the power supplied to the compressor is lost in the form of friction and cylinder cooling losses. Determine the condenser cooling water required in kg/s for temperature rise of 10C.
Refrigerant-134a enters the compressor of a refrigerator as superheated vapor at 0.22 MPa and 27 C at a rate of 0.07 kg/s, and it leaves at 1.2 MPa and 73°C. The refrigerant is cooled in the condenser to 44°C and 1.16 MPa, and t is throttied to 0.21 MPa. Disregarding any heat transfer and pressure drops in the connecting lines between the components, show the cycle on a T-s diagram with respect to saturation lines, and determine (a) the rate of heat removal from the refrigerated space and the power input to the compressor, (b) the isentropic efficiency of the compressor, and (c) the COP of the refrigerator.
An air refrigeration system operating on a closed cycle is required to produce 100 kW of refrigeration with a cooler pressure of 1550 kPa and a refrigerator pressure of 448 kPa. Leaving-air temperatures are 25OC for the cooler and 5OC for the refrigerator. Assuming a theoretical cycle with isentropic compression and expansion, no clearance and no losses, determine (a) the mass flow rate, (b) the compressor displacement, (c) the expander displacement, (d) the heat rejected in the air cooler and (e) the COP.
Chapter 11 Solutions
Thermodynamics: An Engineering Approach
Ch. 11.10 - Why is the reversed Carnot cycle executed within...Ch. 11.10 - Why do we study the reversed Carnot cycle even...Ch. 11.10 - 11–3 A steady-flow Carnot refrigeration cycle uses...Ch. 11.10 - Does the ideal vapor-compression refrigeration...Ch. 11.10 - Why is the throttling valve not replaced by an...Ch. 11.10 - It is proposed to use water instead of...Ch. 11.10 - In a refrigeration system, would you recommend...Ch. 11.10 - Does the area enclosed by the cycle on a T-s...Ch. 11.10 - Consider two vapor-compression refrigeration...Ch. 11.10 - The COP of vapor-compression refrigeration cycles...
Ch. 11.10 - An ice-making machine operates on the ideal...Ch. 11.10 - A 10-kW cooling load is to be served by operating...Ch. 11.10 - 11–13 An ideal vapor-compression refrigeration...Ch. 11.10 - 11–14 Consider a 300 kJ/min refrigeration system...Ch. 11.10 - 11–16 Repeat Prob. 11–14 assuming an isentropic...Ch. 11.10 - 11–17 Refrigerant-134a enters the compressor of a...Ch. 11.10 - A commercial refrigerator with refrigerant-134a as...Ch. 11.10 - 11–19 Refrigcrant-134a enters the compressor of a...Ch. 11.10 - A refrigerator uses refrigerant-134a as the...Ch. 11.10 - The manufacturer of an air conditioner claims a...Ch. 11.10 - Prob. 23PCh. 11.10 - How is the second-law efficiency of a refrigerator...Ch. 11.10 - Prob. 25PCh. 11.10 - Prob. 26PCh. 11.10 - Prob. 27PCh. 11.10 - 11–28 Bananas are to be cooled from 28°C to 12°C...Ch. 11.10 - A vapor-compression refrigeration system absorbs...Ch. 11.10 - A refrigerator operating on the vapor-compression...Ch. 11.10 - A room is kept at 5C by a vapor-compression...Ch. 11.10 - Prob. 32PCh. 11.10 - 11–33 A refrigeration system operates on the ideal...Ch. 11.10 - When selecting a refrigerant for a certain...Ch. 11.10 - Consider a refrigeration system using...Ch. 11.10 - A refrigerant-134a refrigerator is to maintain the...Ch. 11.10 - A refrigerator that operates on the ideal...Ch. 11.10 - A heat pump that operates on the ideal...Ch. 11.10 - Do you think a heat pump system will be more...Ch. 11.10 - What is a water-source heat pump? How does the COP...Ch. 11.10 - Prob. 42PCh. 11.10 - Refrigerant-134a enters the condenser of a...Ch. 11.10 - Prob. 45PCh. 11.10 - A heat pump using refrigerant-134a heats a house...Ch. 11.10 - How does the COP of a cascade refrigeration system...Ch. 11.10 - A certain application requires maintaining the...Ch. 11.10 - Consider a two-stage cascade refrigeration cycle...Ch. 11.10 - Can a vapor-compression refrigeration system with...Ch. 11.10 - Prob. 52PCh. 11.10 - Prob. 53PCh. 11.10 - Repeat Prob. 1156 for a flash chamber pressure of...Ch. 11.10 - Prob. 56PCh. 11.10 - Prob. 57PCh. 11.10 - 11–58 Consider a two-stage cascade refrigeration...Ch. 11.10 - Prob. 59PCh. 11.10 - A two-evaporator compression refrigeration system...Ch. 11.10 - A two-evaporator compression refrigeration system...Ch. 11.10 - Repeat Prob. 1163E if the 30 psia evaporator is to...Ch. 11.10 - How does the ideal gas refrigeration cycle differ...Ch. 11.10 - Devise a refrigeration cycle that works on the...Ch. 11.10 - How is the ideal gas refrigeration cycle modified...Ch. 11.10 - Prob. 66PCh. 11.10 - How do we achieve very low temperatures with gas...Ch. 11.10 - 11–68E Air enters the compressor of an ideal gas...Ch. 11.10 - Prob. 69PCh. 11.10 - Air enters the compressor of an ideal gas...Ch. 11.10 - Repeat Prob. 1173 for a compressor isentropic...Ch. 11.10 - Prob. 73PCh. 11.10 - Prob. 74PCh. 11.10 - Prob. 75PCh. 11.10 - A gas refrigeration system using air as the...Ch. 11.10 - An ideal gas refrigeration system with two stages...Ch. 11.10 - Prob. 78PCh. 11.10 - Prob. 79PCh. 11.10 - What are the advantages and disadvantages of...Ch. 11.10 - Prob. 81PCh. 11.10 - Prob. 82PCh. 11.10 - An absorption refrigeration system that receives...Ch. 11.10 - An absorption refrigeration system receives heat...Ch. 11.10 - Heat is supplied to an absorption refrigeration...Ch. 11.10 - Prob. 86PCh. 11.10 - Prob. 87PCh. 11.10 - Prob. 88PCh. 11.10 - Prob. 89PCh. 11.10 - Consider a circular copper wire formed by...Ch. 11.10 - An iron wire and a constantan wire are formed into...Ch. 11.10 - Prob. 92PCh. 11.10 - Prob. 93PCh. 11.10 - Prob. 94PCh. 11.10 - Prob. 95PCh. 11.10 - Prob. 96PCh. 11.10 - Prob. 97PCh. 11.10 - Prob. 98PCh. 11.10 - A thermoelectric cooler has a COP of 0.18, and the...Ch. 11.10 - Prob. 100PCh. 11.10 - Prob. 101PCh. 11.10 - Prob. 102PCh. 11.10 - Prob. 103RPCh. 11.10 - Prob. 104RPCh. 11.10 - Prob. 105RPCh. 11.10 - A heat pump that operates on the ideal...Ch. 11.10 - A large refrigeration plant is to be maintained at...Ch. 11.10 - Repeat Prob. 11112 assuming the compressor has an...Ch. 11.10 - A heat pump operates on the ideal...Ch. 11.10 - An air conditioner with refrigerant-134a as the...Ch. 11.10 - An air conditioner operates on the...Ch. 11.10 - Consider a two-stage compression refrigeration...Ch. 11.10 - A two-evaporator compression refrigeration system...Ch. 11.10 - Prob. 116RPCh. 11.10 - Prob. 117RPCh. 11.10 - Prob. 118RPCh. 11.10 - Consider a regenerative gas refrigeration cycle...Ch. 11.10 - Prob. 120RPCh. 11.10 - The refrigeration system of Fig. P11122 is another...Ch. 11.10 - Repeat Prob. 11122 if the heat exchanger provides...Ch. 11.10 - An ideal gas refrigeration system with three...Ch. 11.10 - Derive a relation for the COP of the two-stage...Ch. 11.10 - Prob. 129FEPCh. 11.10 - Prob. 130FEPCh. 11.10 - Prob. 131FEPCh. 11.10 - Prob. 132FEPCh. 11.10 - An ideal vapor-compression refrigeration cycle...Ch. 11.10 - Prob. 134FEPCh. 11.10 - An ideal gas refrigeration cycle using air as the...Ch. 11.10 - Prob. 136FEPCh. 11.10 - Prob. 137FEPCh. 11.10 - Prob. 138FEP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Steam Power Cycles: A steam power plant operates on a simple ideal Rankine cycle between the pressure limits of 1250 and 2 psia. The mass flow rate of steam through the cycle is 75 lbm/s. The moisture content of the steam at the turbine exit is not to exceed 10 percent. Show the cycle on a T-s diagram with respect to saturation lines, and determine (a) the minimum turbine inlet temperature, (b) the rate of heat input in the boiler, and (c) the thermal efficiency of the plant.arrow_forwardA refrigerator uses refrigerant-134a as the working fluid and operates on an ideal vapourcompression refrigeration cycle between 0.12 MPa and 0.7 MPa. The mass flow rate of therefrigerant is 0.05 kg/s. Show the cycle on a T-s diagram with respect to saturation lines.Determine;(a) The rate of heat removal from the refrigerated space and the power input to thecompressor,(b) The rate of heat rejection to the environment, and(c) The coefficient of performance.arrow_forwardA gas refrigeration cycle with a pressure ratio of 3 uses helium as the working fluid. The temperature of the helium is -10°C at the compressor inlet and 50°C at the turbine inlet. Assuming adiabatic efficiencies of 80 percent for both the turbine and the compressor, determine (a) the minimum temperature in the cycle, (b) the coefficient of performance, and (c) the mass flow rate of the helium for a refrigeration rate of 18 kW.arrow_forward
- An ammonia compressor operates on an evaporator pressure of 291.57 kPa and a condenser pressure of 1557 kPa. A Heat Exchanger is installed thus superheating the refrigerant by 100C and a subcooling by 50 C. The system is used to cool water at 2 kg/s from 250 C to 150 C. Given: h1=1476 kJ/kg , h2=1752 kJ/kg . Determine the ff: a.) mass flow of reffrigerant. kg/s b.) compressor work. kw c.) mass flow of cooling water needed in the condenser for a temp. drop of 180F. kg/sarrow_forwardA system of air refrigeration working between 1000 kPa and 100 kPa is needed to produce a cooling effect of 2000 kJ/min. The temperature of the air at the outlet cold component is 268 K and at outlet of the cooler component is 30 °C. Neglect losses in the compressor and expander. Determine: a. Mass of air circulated per min; b. Work of compression and expansion processes, and overall cycle work; c. C.O.P. and power in kW required.arrow_forwardA geothermal heat pump running a simple heat pump cycle uses R-134a as the refrigerant and sources thermal energy from well water. The well water enters the evaporator at 13°C and exits at 7°C, with negligible pressure drop. On the refrigerant side, the evaporator operates isobarically at 320 kPa and the refrigerant exits the evaporator at 10°C. The refrigerant is compressed to 1200 kPa through the compressor, which has an isentropic efficiency of 90%. In the condenser, air absorbs energy from the refrigerant at a rate of 4.5 tons (1 ton = 211 kJ/min) as its temperature increases from 22°C at the condenser inlet to 42°C at the condenser outlet. The condenser operates isobarically, and the refrigerant exits the condenser at 20°C. Calculate the input power to the compressor and the COP of the heat pump.arrow_forward
- A vapor-compression refrigeration system circulates refrigerant 134a at a rate of 0.15 kg/s. The refrigerant enters the compressor at -10 degrees Celcius and 100 kPa, and exits the compressor at 800 kPa. The isentropic efficiency of the compressor is 76%. Pressure drop through the condenser and evaporator are negligible. The refrigerant exits the condenser at 30 degrees Celcius and 800 kPa. Ignoring the heat transfer between the compressor and its surroundings, determine: The rate at which heat energy is removed from the refrigerated space in kW. The coefficient of perfromance.arrow_forwardSteam enters the turbine of a simple vapor power plant with a pressure of 10 MPa and temperature of 580°C and expands adiabatically to 6 kPa. Determine (a) temperature at the turbine exit. Also calculate the (b) work input in the pump (in kJ/kg) and the (c) cycle thermal efficiency, in %. Use g = 9.81 m/s2 or 32.2 ft/s2 , T(K)=T(°C)+273 and T(R)=T(°F)+460, where applicable.arrow_forwardA Carnot heat pump cycle is executed in a steady-flow system with R-134a flowing at a rate of 0.21567 kg/s. The net power input to the cycle is 5 kW and the ratio of the maximum to minimum temperature is 1.2. If the refrigerant changes from saturated vapor to saturated liquid during the heat rejection process, (a) plot T-v diagram of the Carnot cycle process with saturation lines, (b) determine the temperature TH during the cycle process. Hint: For the diagram, study P-v diagrams of Carnot cycle, Carnot refrigeration cycle (Chapter 6- 7) and T-v diagram in example 6-6 before you start.arrow_forward
- Refrigerant-134a enters the compressor of a refrigerator as superheated vapor at 0.14 MPa and – 10°C at a rate of 0.12 kg/s, and it leaves at 0.7 MPa and 50°C. The refrigerant is cooled in the condenser to 24°C and 0.65 MPa, and it is throttled to 0.15 MPa. Disregarding any heat transfer and pressure drops in the connecting lines between the components, show the cycle on a T-s diagram with respect to saturation lines, and determine (a) the rate of heat removal from the refrigerated space and the power input to the compressor, (b) the isentropic efficiency of the compressor, and (c) the COP of the refrigerator. T 0.70MPA 2s 50°C 0.65MPA 24°C Win 0.15 MPa 0.14MPA -10°Carrow_forwardA vapor compression refrigeration cycle operates at steady flow conditions with 0.25 kg/s or R-134a. The table below shows some of the operating parameters and properties for the refrigerant. The compressor is réfrigerated, and the condenser is also cooled with water. The compressor receives shaft power equivalent to 7.5 hp. Neglecting changes in kinetic and potential energy changes and any heat loss between devices, please answer the following. a. Complete the table below and sketch the cycle processes on a T-s diagram. When completing the table please use the same number of decimal places as in the tables. b. 123456 Determine the cooling capacity of the refrigeration unit, in Tons (1 refrigeration Ton=211 kJ/min). c. Compute the COP d. Determine the volume flow rate of refrigerant entering the condenser in L/min. e. Determine the mass flow rate of cooling water passing through the condenser. 1. Determine the heat transfer rate from the compressor. g. Compute the rate of entropy…arrow_forwardA vapor compression refrigeration cycle operates at steady flow conditions with 0.25 kg/s or R-134a. The table below shows some of the operating parameters and properties for the refrigerant. The compressor is refrigerated, and the condenser is also cooled with water. The compressor receives shaft power equivalent to 7.5 hp. Neglecting changes in kinetic and potential energy changes and any heat loss between devices, please answer the following. a. Complete the table below and sketch the cycle processes on a T-s diagram. When completing the table please use the same number of decimal places as in the tables. 123456 b. Determine the cooling capacity of the refrigeration unit, in Tons (1 refrigeration Ton = 211 kJ/min). c. Compute the COP. d. Determine the volume flow rate of refrigerant entering the condenser in L/min. e. Determine the mass flow rate of cooling water passing through the condenser. f. Determine the heat transfer rate from the compressor. g. Compute the rate of entropy…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
The Refrigeration Cycle Explained - The Four Major Components; Author: HVAC Know It All;https://www.youtube.com/watch?v=zfciSvOZDUY;License: Standard YouTube License, CC-BY