Thermodynamics: An Engineering Approach
8th Edition
ISBN: 9780073398174
Author: Yunus A. Cengel Dr., Michael A. Boles
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 11.10, Problem 98P
To determine
The required power input to the thermoelectric cooler.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Quick solution,no gpt.
An A/C unit removes heat from the house at a rate of 1 MJ/min. If the required power input to this
A/C unit is 6 kW, determine:
a. COP of the air-conditioning unit.
b. The rate of heat rejection to the outside air, in kW.
A heat pump operates with a Coefficient of Performance equal to 8. What is the COP if this cycle were to operate as a refrigerator?
Chapter 11 Solutions
Thermodynamics: An Engineering Approach
Ch. 11.10 - Why is the reversed Carnot cycle executed within...Ch. 11.10 - Why do we study the reversed Carnot cycle even...Ch. 11.10 - 11–3 A steady-flow Carnot refrigeration cycle uses...Ch. 11.10 - Does the ideal vapor-compression refrigeration...Ch. 11.10 - Why is the throttling valve not replaced by an...Ch. 11.10 - It is proposed to use water instead of...Ch. 11.10 - In a refrigeration system, would you recommend...Ch. 11.10 - Does the area enclosed by the cycle on a T-s...Ch. 11.10 - Consider two vapor-compression refrigeration...Ch. 11.10 - The COP of vapor-compression refrigeration cycles...
Ch. 11.10 - An ice-making machine operates on the ideal...Ch. 11.10 - A 10-kW cooling load is to be served by operating...Ch. 11.10 - 11–13 An ideal vapor-compression refrigeration...Ch. 11.10 - 11–14 Consider a 300 kJ/min refrigeration system...Ch. 11.10 - 11–16 Repeat Prob. 11–14 assuming an isentropic...Ch. 11.10 - 11–17 Refrigerant-134a enters the compressor of a...Ch. 11.10 - A commercial refrigerator with refrigerant-134a as...Ch. 11.10 - 11–19 Refrigcrant-134a enters the compressor of a...Ch. 11.10 - A refrigerator uses refrigerant-134a as the...Ch. 11.10 - The manufacturer of an air conditioner claims a...Ch. 11.10 - Prob. 23PCh. 11.10 - How is the second-law efficiency of a refrigerator...Ch. 11.10 - Prob. 25PCh. 11.10 - Prob. 26PCh. 11.10 - Prob. 27PCh. 11.10 - 11–28 Bananas are to be cooled from 28°C to 12°C...Ch. 11.10 - A vapor-compression refrigeration system absorbs...Ch. 11.10 - A refrigerator operating on the vapor-compression...Ch. 11.10 - A room is kept at 5C by a vapor-compression...Ch. 11.10 - Prob. 32PCh. 11.10 - 11–33 A refrigeration system operates on the ideal...Ch. 11.10 - When selecting a refrigerant for a certain...Ch. 11.10 - Consider a refrigeration system using...Ch. 11.10 - A refrigerant-134a refrigerator is to maintain the...Ch. 11.10 - A refrigerator that operates on the ideal...Ch. 11.10 - A heat pump that operates on the ideal...Ch. 11.10 - Do you think a heat pump system will be more...Ch. 11.10 - What is a water-source heat pump? How does the COP...Ch. 11.10 - Prob. 42PCh. 11.10 - Refrigerant-134a enters the condenser of a...Ch. 11.10 - Prob. 45PCh. 11.10 - A heat pump using refrigerant-134a heats a house...Ch. 11.10 - How does the COP of a cascade refrigeration system...Ch. 11.10 - A certain application requires maintaining the...Ch. 11.10 - Consider a two-stage cascade refrigeration cycle...Ch. 11.10 - Can a vapor-compression refrigeration system with...Ch. 11.10 - Prob. 52PCh. 11.10 - Prob. 53PCh. 11.10 - Repeat Prob. 1156 for a flash chamber pressure of...Ch. 11.10 - Prob. 56PCh. 11.10 - Prob. 57PCh. 11.10 - 11–58 Consider a two-stage cascade refrigeration...Ch. 11.10 - Prob. 59PCh. 11.10 - A two-evaporator compression refrigeration system...Ch. 11.10 - A two-evaporator compression refrigeration system...Ch. 11.10 - Repeat Prob. 1163E if the 30 psia evaporator is to...Ch. 11.10 - How does the ideal gas refrigeration cycle differ...Ch. 11.10 - Devise a refrigeration cycle that works on the...Ch. 11.10 - How is the ideal gas refrigeration cycle modified...Ch. 11.10 - Prob. 66PCh. 11.10 - How do we achieve very low temperatures with gas...Ch. 11.10 - 11–68E Air enters the compressor of an ideal gas...Ch. 11.10 - Prob. 69PCh. 11.10 - Air enters the compressor of an ideal gas...Ch. 11.10 - Repeat Prob. 1173 for a compressor isentropic...Ch. 11.10 - Prob. 73PCh. 11.10 - Prob. 74PCh. 11.10 - Prob. 75PCh. 11.10 - A gas refrigeration system using air as the...Ch. 11.10 - An ideal gas refrigeration system with two stages...Ch. 11.10 - Prob. 78PCh. 11.10 - Prob. 79PCh. 11.10 - What are the advantages and disadvantages of...Ch. 11.10 - Prob. 81PCh. 11.10 - Prob. 82PCh. 11.10 - An absorption refrigeration system that receives...Ch. 11.10 - An absorption refrigeration system receives heat...Ch. 11.10 - Heat is supplied to an absorption refrigeration...Ch. 11.10 - Prob. 86PCh. 11.10 - Prob. 87PCh. 11.10 - Prob. 88PCh. 11.10 - Prob. 89PCh. 11.10 - Consider a circular copper wire formed by...Ch. 11.10 - An iron wire and a constantan wire are formed into...Ch. 11.10 - Prob. 92PCh. 11.10 - Prob. 93PCh. 11.10 - Prob. 94PCh. 11.10 - Prob. 95PCh. 11.10 - Prob. 96PCh. 11.10 - Prob. 97PCh. 11.10 - Prob. 98PCh. 11.10 - A thermoelectric cooler has a COP of 0.18, and the...Ch. 11.10 - Prob. 100PCh. 11.10 - Prob. 101PCh. 11.10 - Prob. 102PCh. 11.10 - Prob. 103RPCh. 11.10 - Prob. 104RPCh. 11.10 - Prob. 105RPCh. 11.10 - A heat pump that operates on the ideal...Ch. 11.10 - A large refrigeration plant is to be maintained at...Ch. 11.10 - Repeat Prob. 11112 assuming the compressor has an...Ch. 11.10 - A heat pump operates on the ideal...Ch. 11.10 - An air conditioner with refrigerant-134a as the...Ch. 11.10 - An air conditioner operates on the...Ch. 11.10 - Consider a two-stage compression refrigeration...Ch. 11.10 - A two-evaporator compression refrigeration system...Ch. 11.10 - Prob. 116RPCh. 11.10 - Prob. 117RPCh. 11.10 - Prob. 118RPCh. 11.10 - Consider a regenerative gas refrigeration cycle...Ch. 11.10 - Prob. 120RPCh. 11.10 - The refrigeration system of Fig. P11122 is another...Ch. 11.10 - Repeat Prob. 11122 if the heat exchanger provides...Ch. 11.10 - An ideal gas refrigeration system with three...Ch. 11.10 - Derive a relation for the COP of the two-stage...Ch. 11.10 - Prob. 129FEPCh. 11.10 - Prob. 130FEPCh. 11.10 - Prob. 131FEPCh. 11.10 - Prob. 132FEPCh. 11.10 - An ideal vapor-compression refrigeration cycle...Ch. 11.10 - Prob. 134FEPCh. 11.10 - An ideal gas refrigeration cycle using air as the...Ch. 11.10 - Prob. 136FEPCh. 11.10 - Prob. 137FEPCh. 11.10 - Prob. 138FEP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The operating condition for the single compressor in a household refrigerator is the lowest box temperature, which is typically A. 0F B. -20F C. 20F D. 40Farrow_forwardA vapor compression refrigeration system is designed to have a capacity of 100 tons of refrigeration. It produces chilled water from 23C to 2C. Its actual coefficient of performance is 5.96 and 35% of the power supplied to the compressor is lost in the form of friction and cylinder cooling losses. Determine the condenser cooling water required in kg/s for temperature rise of 10C.arrow_forwardThe heat removal rate from a refrigerated space and the power input to the compressor are 8.5kW and 1.7 respectively. The coefficient of performance of the refrigerantarrow_forward
- I need a step by step solution please :)arrow_forwardA refrigeration unit absorbs 1 kW of heat from the cold reservoir and rejects 1.3kW of heat to the warm reservoir. What is the unit's coefficient of performance?arrow_forwardAn air conditioner on a summer day removes heat steadily from a house at a rate of 750 kJ/min while drawing electric power at a rate of 5.25 kW. Please answer the following. a. Create a schematic representation of the air conditioning system under consideration. b. Determine the COP of this air conditioner and the rate of heat transfer to the outside air. c. Now winter has come, and the owner decides to use the equipment as heat pump to warm the house. Because the house is not perfectly insulated, and the outside temperature is 0°C the estimated rate of heat transfer loss rate from the house to the surroundings is equal to 1200 kJ/min. Will the air conditioning unit operating as heat pump satisfy the required heating if the electrical power drawn is 5.25 kW? Explain how you arrived at the answer. d. If the heat pump would operate as a Carnot Heat Pump and the indoor temperature is 25°C while the outside temperature is 0°C, compute the COP.arrow_forward
- A window-mounted air conditioner removes 2.1 kJ from the inside of a home using 1.75 kJ work input. What is its coefficient of performance? Note: thermodynamically, and air conditioner is the same thing as a refrigerator - it makes the inside of a container (house, refrigerator) colder.arrow_forward4. A household refrigerator with a COP of 1.25 removes heat from the refrigerated space at a rate of OL Determine (a) the electric power consumed by the refrigerator and (b) the rate of heat transfer to the kitchen air. (20 Do Student number 1 210505269 2 200505527 QL (kJ/min) 90 89 Student 16/10 17arrow_forwardConsider a building whose annual air-conditioning load is estimated to be 40,000 kWh in an area where the unit cost of electricity is RM0.10/kWh. Two air conditioners (Figure 2) are considered for the building. Air conditioner A has a seasonal average COP of 2.3 and costs RM5500 to purchase and install. Air conditioner B has a seasonal average COP of 3.6 and costs RM7000 to purchase and install. All else being equal, determine which air conditioner is a better buy. A Air cond. COP = 2.3 D Win House 40,000 kWh Figure 2 40,000 kWh B Air cond. COP = 3.6 Winarrow_forward
- What is the highest COP that a refrigerator operating between temperature levels TL and TH can have?arrow_forward3. An air conditioner removes heat steadily from a house at a rate of 750 klimin while drawing electric power at a rate of 6 kW. Determine (a) the COP of this air conditioner and (b) the rate of heat transfer to the outside air. (20R. 0 min 1arrow_forwardA heat pump is used to meet the heating requirements of a house and maintain it at 20°C. On a day when the outdoor air temperature drops to -2°C, the house is estimated to lose heat at a rate of 63,000 kJ/h. If the heat pump under these conditions has a COP of 1.8, determine the rate at which heat is absorbed from the cold outdoor air. Select one: a. 28,000 kJ/h b. 58,000 kJ/h c. 38,000 kJ/h d. 48,000 kJ/h NEED ASAP. I WILL UPVOTEarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage LearningRefrigeration and Air Conditioning Technology (Mi...Mechanical EngineeringISBN:9781305578296Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill JohnsonPublisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Refrigeration and Air Conditioning Technology (Mi...
Mechanical Engineering
ISBN:9781305578296
Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill Johnson
Publisher:Cengage Learning
Hydronics Step by Step; Author: Taco Comfort Solutions;https://www.youtube.com/watch?v=-XGNl9kppR8;License: Standard Youtube License