Thermodynamics: An Engineering Approach
8th Edition
ISBN: 9780073398174
Author: Yunus A. Cengel Dr., Michael A. Boles
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 11.10, Problem 106RP
A heat pump that operates on the ideal vapor-compression cycle with refrigerant-134a is used to heat a house. The mass flow rate of the refrigerant is 0.25 kg/s. The condenser and evaporator pressures are 1400 and 320 kPa, respectively. Show the cycle on a T-s diagram with respect to saturation lines, and determine (a) the rate of heat supply to the house, (b) the volume flow rate of the refrigerant at the compressor inlet, and (c) the COP of this heat pump.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A refrigerator uses refrigerant-134a as the working fluid and operates on an ideal vapourcompression refrigeration cycle between 0.12 MPa and 0.7 MPa. The mass flow rate of therefrigerant is 0.05 kg/s. Show the cycle on a T-s diagram with respect to saturation lines.Determine;(a) The rate of heat removal from the refrigerated space and the power input to thecompressor,(b) The rate of heat rejection to the environment, and(c) The coefficient of performance.
Consider a refrigeration system that operates on an actual vapor-compression refrigeration cycle with refrigerant 134a as the working fluid with an isentropic efficiency of a compressor of 75.1%. The refrigerant enters the compressor as saturated vapor at 140 kPa and is compressed to 800 kPa. Determine the value of h2 in kj/hg, answer in 4 decimal places with unit analysis.
Subject: Thermodynamics 2
Consider a refrigeration system that operates on an actual vapor-compression refrigeration cycle with refrigerant 134a as the working fluid with an isentropic efficiency of a compressor of 83.4%. The refrigerant enters the compressor as saturated vapor at 140 kPa and is compressed to 800 kPa. Determine the value of h2 in kj/hg, answer in 4 decimal places with unit analysis.
SUBJECT: Refrigeration Systems
Chapter 11 Solutions
Thermodynamics: An Engineering Approach
Ch. 11.10 - Why is the reversed Carnot cycle executed within...Ch. 11.10 - Why do we study the reversed Carnot cycle even...Ch. 11.10 - 11–3 A steady-flow Carnot refrigeration cycle uses...Ch. 11.10 - Does the ideal vapor-compression refrigeration...Ch. 11.10 - Why is the throttling valve not replaced by an...Ch. 11.10 - It is proposed to use water instead of...Ch. 11.10 - In a refrigeration system, would you recommend...Ch. 11.10 - Does the area enclosed by the cycle on a T-s...Ch. 11.10 - Consider two vapor-compression refrigeration...Ch. 11.10 - The COP of vapor-compression refrigeration cycles...
Ch. 11.10 - An ice-making machine operates on the ideal...Ch. 11.10 - A 10-kW cooling load is to be served by operating...Ch. 11.10 - 11–13 An ideal vapor-compression refrigeration...Ch. 11.10 - 11–14 Consider a 300 kJ/min refrigeration system...Ch. 11.10 - 11–16 Repeat Prob. 11–14 assuming an isentropic...Ch. 11.10 - 11–17 Refrigerant-134a enters the compressor of a...Ch. 11.10 - A commercial refrigerator with refrigerant-134a as...Ch. 11.10 - 11–19 Refrigcrant-134a enters the compressor of a...Ch. 11.10 - A refrigerator uses refrigerant-134a as the...Ch. 11.10 - The manufacturer of an air conditioner claims a...Ch. 11.10 - Prob. 23PCh. 11.10 - How is the second-law efficiency of a refrigerator...Ch. 11.10 - Prob. 25PCh. 11.10 - Prob. 26PCh. 11.10 - Prob. 27PCh. 11.10 - 11–28 Bananas are to be cooled from 28°C to 12°C...Ch. 11.10 - A vapor-compression refrigeration system absorbs...Ch. 11.10 - A refrigerator operating on the vapor-compression...Ch. 11.10 - A room is kept at 5C by a vapor-compression...Ch. 11.10 - Prob. 32PCh. 11.10 - 11–33 A refrigeration system operates on the ideal...Ch. 11.10 - When selecting a refrigerant for a certain...Ch. 11.10 - Consider a refrigeration system using...Ch. 11.10 - A refrigerant-134a refrigerator is to maintain the...Ch. 11.10 - A refrigerator that operates on the ideal...Ch. 11.10 - A heat pump that operates on the ideal...Ch. 11.10 - Do you think a heat pump system will be more...Ch. 11.10 - What is a water-source heat pump? How does the COP...Ch. 11.10 - Prob. 42PCh. 11.10 - Refrigerant-134a enters the condenser of a...Ch. 11.10 - Prob. 45PCh. 11.10 - A heat pump using refrigerant-134a heats a house...Ch. 11.10 - How does the COP of a cascade refrigeration system...Ch. 11.10 - A certain application requires maintaining the...Ch. 11.10 - Consider a two-stage cascade refrigeration cycle...Ch. 11.10 - Can a vapor-compression refrigeration system with...Ch. 11.10 - Prob. 52PCh. 11.10 - Prob. 53PCh. 11.10 - Repeat Prob. 1156 for a flash chamber pressure of...Ch. 11.10 - Prob. 56PCh. 11.10 - Prob. 57PCh. 11.10 - 11–58 Consider a two-stage cascade refrigeration...Ch. 11.10 - Prob. 59PCh. 11.10 - A two-evaporator compression refrigeration system...Ch. 11.10 - A two-evaporator compression refrigeration system...Ch. 11.10 - Repeat Prob. 1163E if the 30 psia evaporator is to...Ch. 11.10 - How does the ideal gas refrigeration cycle differ...Ch. 11.10 - Devise a refrigeration cycle that works on the...Ch. 11.10 - How is the ideal gas refrigeration cycle modified...Ch. 11.10 - Prob. 66PCh. 11.10 - How do we achieve very low temperatures with gas...Ch. 11.10 - 11–68E Air enters the compressor of an ideal gas...Ch. 11.10 - Prob. 69PCh. 11.10 - Air enters the compressor of an ideal gas...Ch. 11.10 - Repeat Prob. 1173 for a compressor isentropic...Ch. 11.10 - Prob. 73PCh. 11.10 - Prob. 74PCh. 11.10 - Prob. 75PCh. 11.10 - A gas refrigeration system using air as the...Ch. 11.10 - An ideal gas refrigeration system with two stages...Ch. 11.10 - Prob. 78PCh. 11.10 - Prob. 79PCh. 11.10 - What are the advantages and disadvantages of...Ch. 11.10 - Prob. 81PCh. 11.10 - Prob. 82PCh. 11.10 - An absorption refrigeration system that receives...Ch. 11.10 - An absorption refrigeration system receives heat...Ch. 11.10 - Heat is supplied to an absorption refrigeration...Ch. 11.10 - Prob. 86PCh. 11.10 - Prob. 87PCh. 11.10 - Prob. 88PCh. 11.10 - Prob. 89PCh. 11.10 - Consider a circular copper wire formed by...Ch. 11.10 - An iron wire and a constantan wire are formed into...Ch. 11.10 - Prob. 92PCh. 11.10 - Prob. 93PCh. 11.10 - Prob. 94PCh. 11.10 - Prob. 95PCh. 11.10 - Prob. 96PCh. 11.10 - Prob. 97PCh. 11.10 - Prob. 98PCh. 11.10 - A thermoelectric cooler has a COP of 0.18, and the...Ch. 11.10 - Prob. 100PCh. 11.10 - Prob. 101PCh. 11.10 - Prob. 102PCh. 11.10 - Prob. 103RPCh. 11.10 - Prob. 104RPCh. 11.10 - Prob. 105RPCh. 11.10 - A heat pump that operates on the ideal...Ch. 11.10 - A large refrigeration plant is to be maintained at...Ch. 11.10 - Repeat Prob. 11112 assuming the compressor has an...Ch. 11.10 - A heat pump operates on the ideal...Ch. 11.10 - An air conditioner with refrigerant-134a as the...Ch. 11.10 - An air conditioner operates on the...Ch. 11.10 - Consider a two-stage compression refrigeration...Ch. 11.10 - A two-evaporator compression refrigeration system...Ch. 11.10 - Prob. 116RPCh. 11.10 - Prob. 117RPCh. 11.10 - Prob. 118RPCh. 11.10 - Consider a regenerative gas refrigeration cycle...Ch. 11.10 - Prob. 120RPCh. 11.10 - The refrigeration system of Fig. P11122 is another...Ch. 11.10 - Repeat Prob. 11122 if the heat exchanger provides...Ch. 11.10 - An ideal gas refrigeration system with three...Ch. 11.10 - Derive a relation for the COP of the two-stage...Ch. 11.10 - Prob. 129FEPCh. 11.10 - Prob. 130FEPCh. 11.10 - Prob. 131FEPCh. 11.10 - Prob. 132FEPCh. 11.10 - An ideal vapor-compression refrigeration cycle...Ch. 11.10 - Prob. 134FEPCh. 11.10 - An ideal gas refrigeration cycle using air as the...Ch. 11.10 - Prob. 136FEPCh. 11.10 - Prob. 137FEPCh. 11.10 - Prob. 138FEP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 3. A refrigerator uses refrigerant-134a as the working fluid and operates on the ideal vapor- compression refrigeration cycle except for the compression process. The refrigerant enters the evaporator at 120 kPa with a quality of 34 percent and leaves the compressor at 70°C. If the compressor consumes 450 W of power, determine (a) the mass flow rate of the refrigerant, (b) the condenser pressure, and (c) the COP of the refrigerator. Answers: (a) 0.00644 kg/s, (b) 800 kPa, (c) 2.03 |↓ Condenser Expansion valve 120 kPa x=0.34 Evaporator M Warm environment 70°C Compressor Cold environmentarrow_forwardA refrigerator uses refrigerant-134a as the working fluid and operates on an ideal vapor-compression refrigeration cycle between 0.12 and 0.9 MPa. The mass flow rate of the refrigerant is 0.05 kg/s which exits the condenser as saturated liquid. (a) Show the cycle on a P-h and T-s diagram with respect to saturation lines. (b) Determine the rate of heat removal from the refrigerated space and the power input to the compressor, and (c) the coeifficient of performance.arrow_forwardQ2. Consider a 300 kJ/min refrigeration system that operates on an ideal vapor-compression refrigeration cycle with refrigerant-134a as the working fluid. The refrigerant enters the compressor as saturated vapor at 140 kPa and is compressed to 800 kPa. Show the cycle on a T-s diagram with respect to saturation lines and determine (a) the quality of the refrigerant at the end of the throttling process, (b) the coefficient of performance, and (c) the power input to the compressor. Solve this question using both tables and P-h chart.arrow_forward
- A vapor compression refrigeration cycle operates at steady flow conditions with 0.25 kg/s or R-134a. The table below shows some of the operating parameters and properties for the refrigerant. The compressor is réfrigerated, and the condenser is also cooled with water. The compressor receives shaft power equivalent to 7.5 hp. Neglecting changes in kinetic and potential energy changes and any heat loss between devices, please answer the following. a. Complete the table below and sketch the cycle processes on a T-s diagram. When completing the table please use the same number of decimal places as in the tables. b. 123456 Determine the cooling capacity of the refrigeration unit, in Tons (1 refrigeration Ton=211 kJ/min). c. Compute the COP d. Determine the volume flow rate of refrigerant entering the condenser in L/min. e. Determine the mass flow rate of cooling water passing through the condenser. 1. Determine the heat transfer rate from the compressor. g. Compute the rate of entropy…arrow_forwardA vapor compression refrigeration cycle operates at steady flow conditions with 0.25 kg/s or R-134a. The table below shows some of the operating parameters and properties for the refrigerant. The compressor is refrigerated, and the condenser is also cooled with water. The compressor receives shaft power equivalent to 7.5 hp. Neglecting changes in kinetic and potential energy changes and any heat loss between devices, please answer the following. a. Complete the table below and sketch the cycle processes on a T-s diagram. When completing the table please use the same number of decimal places as in the tables. 123456 b. Determine the cooling capacity of the refrigeration unit, in Tons (1 refrigeration Ton = 211 kJ/min). c. Compute the COP. d. Determine the volume flow rate of refrigerant entering the condenser in L/min. e. Determine the mass flow rate of cooling water passing through the condenser. f. Determine the heat transfer rate from the compressor. g. Compute the rate of entropy…arrow_forwardA gas refrigeration cycle with a pressure ratio of 3 uses helium as the working fluid. The temperature of the helium is -10°C at the compressor inlet and 50°C at the turbine inlet. Assuming adiabatic efficiencies of 80 percent for both the turbine and the compressor, determine (a) the minimum temperature in the cycle, (b) the coefficient of performance, and (c) the mass flow rate of the helium for a refrigeration rate of 18 kW.arrow_forward
- A refrigerator uses refrigerant-134a as the working fluid and operates on an ideal vapor-compression refrigeration cycle between 0.12 and 0.7 MPa at a rate of 0.05 kg/s. Show the cycle on a T-s diagram with respect to saturation lines. Determine (a)the rate of heat removal from the refrigerated space and the power input to the compressor, (b)the rate of heat rejection to the environment, (c)the coefficient of performance.arrow_forwardA commercial refrigerator with refrigerant (R-22) as the working fluid is used to keep the refrigerated space at -25 °C by rejecting waste heat to cooling water that enters the condenser at 16 °C at a rate of 0.3 Kg/s and leaves at 36 °C. The refrigerant enters the condenser at 12 bar and 50 °C and leaves at the same pressure subcooled by 8.25 °C. if the compressor consumes 8 kW of power, determine the following using Michael J.Moran Tables: The mass flow rate of the refrigerant The refrigeration load The CoP The minimum power input to the compressor for the same refrigeration loadarrow_forwardAn ideal gas refrigeration cycle with a pressure ratio of four uses air as the working fluid. Air enters the compressor at 100 kPa and 0°C and the turbine at 50 °C. Determine (a) the temperature at the turbine exit, (b) the heat removed per unit mass of the air, and (c) the COP of the cycle. Use constant specific heat for air at room temperature with cp = 1.005 kJ/kg.K and k = 1.4.arrow_forward
- A heat pump that operates on the ideal vaporcompression cycle with refrigerant-134a is used to heat water from 15 to 45C at a rate of 0.12 kg/s. The condenser and evaporator pressures are 1.4 and 0.32 MPa, respectively. Determine the power input to the heat pump.arrow_forwardA refrigerator working on Carnot cycle uses R134a as the working fluid. The refrigerant changes from saturated vapor to saturated liquid at 30 C° in the condenser as it rejects heat. The evaporator pressure is 120 kPa. Show the cycle on a T-s diagram relative to saturation lines, and determine (a) COP F (b) Amount of heat absorbed from the refrigerated space, and (c) Consumed work.arrow_forwardRefrigerant-134a enters the compressor of a refrigerator at 140 kPa and -10°C at a rate of 0.3 m3/min and leaves at 1 MPa. The isentropic efficiency of the compressor is 78 percent. The refrigerant enters the throttling valve at 0.95 MPa and 30°C and leaves the evaporator as saturated vapor at -18.5°C. Show the cycle on a T-s diagram with respect to saturation lines, and determine (a) the power input to the compressor, (b) the rate of heat removal from the refrigerated space, and (c) the pressure drop andrate of heat gain in the line between the evaporator and the compressor. answers 1.88 kW, 7.11 kW, 1.72 kPa, 0.24 kWarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Refrigeration and Air Conditioning Technology (Mi...Mechanical EngineeringISBN:9781305578296Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill JohnsonPublisher:Cengage Learning
Refrigeration and Air Conditioning Technology (Mi...
Mechanical Engineering
ISBN:9781305578296
Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill Johnson
Publisher:Cengage Learning
The Refrigeration Cycle Explained - The Four Major Components; Author: HVAC Know It All;https://www.youtube.com/watch?v=zfciSvOZDUY;License: Standard YouTube License, CC-BY