
The design parameters for the BJT differential amplifier with the active load and the mode voltage gain.

Answer to Problem D11.71P
The value of the differential voltage gain is
Explanation of Solution
Given:
The given circuit is shown in Figure 1
Figure 1
Calculation:
The expression for the input current is given by,
The expression to determine the value of the transconductance is given by,
The expression for the relation for the voltage for hybrid pie parameter.
Substitute
The value of the collector current
The value of the collector current
The expression to determine the expression for the diffusion resistance is given by,
Substitute
The value of the transconductance is calculated as,
Substitute
The expression to determine the value of the resistance
Substitute
The expression to determine the expression for the diffusion resistance is given by,
Substitute
The value of the transconductance is calculated as,
Substitute
The expression to determine the value of the resistance
Substitute
Substitute
The expression for the input current
Substitute
Substitute
The expression to determine the output resistance is given by,
Substitute
The value of the quiescent current is given by,
The small signal output resistance is calculated as,
The value of the output resistance is calculated as,
The required small signal circuit is shown in Figure 2
Figure 2
The expression for the transconductance is given by,
The expression for the differential voltage gain is given by,
The expression for the change in current is given by,
Consider the value of
Substitute the values in the above equation.
Substitute
Substitute
Substitute
Substitute
The value of gain is given by,
The expression for the input resistor is given by,
The value of expression for the differential input resistor is calculated as,
Conclusion:
Therefore, the value of the differential voltage gain is
Want to see more full solutions like this?
Chapter 11 Solutions
Microelectronics: Circuit Analysis and Design
- Find the binary sequence, for the following Differential Manchester code.arrow_forwardQ2- What are the parameters and loss that can be determined during open-circuit test of singlephase transformer. Draw the circuit diagram of open-circuit test and explain how can you calculate the Parameters and loss.arrow_forwardQ6- the open circuit and short circuit tests on a 10 KVA, 125/250 v, 50 Hz single phase transformer gave the following results: O.C. Test: 125 V,0.6 A, 50 W ( on L.V.) S.C. Test: 20 V, 40 A, 177.78 W (on H.V. side) Calculate: i) Copper losses on half load ii) Full load efficiency at 0.8 leading p.f. iii) Half load efficiency at 0.8 leading p.f. iv) Regulation at full load at 0.9 leading p.f. Ans: 44.445 W, 97.23%, 97.69%, -1.8015%arrow_forward
- Q3-A two-winding transformer has a primary winding with 208 turns and a secondary winding with 6 turns. The primary winding is connected to a 4160V system. What is the secondary voltage at no load? What is the current in the primary winding with a 50-amp load connected to the secondary winding? What is the apparent power flowing in the primary and secondary circuits? Ans. 120 V, 1.44 A, 6000 VAarrow_forwardQ12- A three phase transformer 3300/400 V,has D/Y connected and working on 50Hz. The line current on the primary side is 12A and secondary has a balanced load at 0.8 lagging p.f. Determine the i) Secondary phase voltage ii) Line current iii) Output power Ans. (230.95 V, 99.11 A, 54.94 kW)arrow_forwardQ1- A single phase transformer consumes 2 A on no load at p.f. 0.208 lagging. The turns ratio is 2/1 (step down). If the loads on the secondary is 25 A at a p.f. 0.866 lagging. Find the primary current and power factor.arrow_forward
- Q7- A 5 KVA, 500/250 V,50 Hz, single phase transformer gave the following reading: O.C. Test: 250 V,2 A, 50 W (H.V. side open) S.C. Test: 25 V10 A, 60 W (L.V. side shorted) Determine: i) The efficiency on full load, 0.8 lagging p.f. ii) The voltage regulation on full load, 0.8 leading p.f. iii) Draw the equivalent circuit referred to primary and insert all the values it.arrow_forwardQ4- A single phase transformer has 350 primary and secondary 1050 turns. The primary is connected to 400 V,50 Hz a.c. supply. If the net cross sectional area of core is 50 cm2, calculate i) The maximum value of the flux density in the core. ii) The induced e.m.f in the secondary winding. Ans: 1.029 T, 1200Varrow_forwardpower systems engineeringarrow_forward
- EBK ELECTRICAL WIRING RESIDENTIALElectrical EngineeringISBN:9781337516549Author:SimmonsPublisher:CENGAGE LEARNING - CONSIGNMENT
