
(a)
The small signal parameters for each of the transistor and the value of the composite transconductance for the given specifications.
(a)

Answer to Problem 11.80P
The value of the small signal parameters are
Explanation of Solution
Given:
The given diagram is shown in Figure 1
Figure 1
Calculation:
The expression to determine the value of the emitter current of the second transistor is calculated as,
The expression to determine the value of the current
Substitute
The value of the transconductance
The expression to determine the value of the small signal resistance is given by,
Substitute
The value of the drain current
The value of the transconductance
Substitute
The expression to determine the value of the composite transconductance is given by,
Substitute
Conclusion:
Therefore, the value of the small signal parameters are
(b)
The small signal parameters for each of the transistor and the value of the composite transconductance for the given specifications.
(b)

Answer to Problem 11.80P
The value of the small signal parameters are
Explanation of Solution
Given:
The given diagram is shown in Figure 1
Figure 1
Calculation:
The expression to determine the value of the emitter current of the second transistor is calculated as,
The expression to determine the value of the current
Substitute
The value of the transconductance
The expression to determine the value of the small signal resistance is given by,
Substitute
The value of the drain current
The value of the transconductance
Substitute
The expression to determine the value of the composite transconductance is given by,
Substitute
Conclusion:
Therefore, the value of the small signal parameters are
Want to see more full solutions like this?
Chapter 11 Solutions
Microelectronics: Circuit Analysis and Design
- Don't use ai to answer I will report you answerarrow_forwardHow can I design a socket for a trolley headlight? What parameters should I measure? The only thing I have is the headlight itself, and I don’t have any information about its power, current, or voltage rating. The power source is 120 V, and my goal is simply to get the headlight to turn on.I’m not sure where to start or what to measure. Any recommendations would be greatly appreciated!arrow_forwardFigure 2 3) *** The circuit of Figure 3 is designed with W/L = 20/0.18, λ= 0, and ID = 0.25 mA. (Optional- 20 points) a) Compute the required gate bias voltage. b) With such a gate voltage, how much can W/L be increased while M1 remains in saturation? What is the maximum voltage gain that can be achieved as W/L increases? VDD = 1.8 V RD 2k - Vout Vin M₁ Figure 3arrow_forward
- 1) Rs = 4kQ, R₁ = 850 kQ, R₂ = 350 kQ, and R₁ = 4 kQ. The transistor parameters are VTP = -12 V, K'p = 40 µA / V², W/L = 80, and λ = 0.05 V-1. (50 Points) a) Determine IDQ and VSDQ. b) Find the small signal voltage gain. (Av) c) Determine the small signal circuit transconductance gain. (Ag = io/vi) d) Find the small signal output resistance. VDD = 10 V 2'; www www Figure 1 Ссarrow_forwardQ11arrow_forwardQ15arrow_forward
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,





