
Hyperbolic Mirrors Hyperbolas have interesting reflective properties that make them useful for lenses and mirrors. For example, if a ray of light strikes a convex hyperbolic mirror on a line that would (theoretically) pass through its rear focus, it is reflected through the front focus. This property, and that of the parabola, were used to develop the Cassegrain telescope in 1672. The focus of the parabolic mirror and the rear focus of the hyperbolic mirror are the same point. The rays are collected by the parabolic mirror, then are reflected toward the (common) focus, and thus are reflected by the hyperbolic mirror through the opening to its front focus, where the eyepiece is located. If the equation of the hyperbola is and the focal length (distance from the vertex to the focus) of the parabola is 6, find the equation of the parabola.
Source: www.enchantedlearning.com

To find: The equation of the parabola if details of hyperbola are given.
Answer to Problem 80AYU
Solution:
Explanation of Solution
Given:
About hyperbolic mirrors: Hyperbolas have interesting reflective properties that make them useful for lenses and mirrors. For example, if a ray of light strikes a convex hyperbolic mirror on a line that would (theoretically) pass through its rear focus, it is reflected through the front focus. This property, and that of the parabola, were used to develop the Cassegrain telescope in 1672. The focus of the parabolic mirror and the rear focus of the hyperbolic mirror are the same point. The rays are collected by the parabolic mirror, then are reflected toward the (common) focus, and thus are reflected by the hyperbolic mirror through the opening to its front focus, where the eyepiece is located.
The equation of the hyperbola is and the focal length (distance from the vertex to the focus) of the parabola is 6.
Formula used:
Equation of the parabola is .
Calculation:
Let us assume that the center of hyperbola is origin.
From the given equation we see that the transverse axis is parallel to .
Let the foci of the hyperbola be .
or
Therefore, foci of the hyperbola are at .
Let us assume that the parabola opens up,
The focus is at , then the equation of the parabola will be ,
The focal length is given as 6.
We know that the distance focus of the parabola is located at .
Hence,
The equation of the parabola becomes,
Chapter 10 Solutions
Precalculus Enhanced with Graphing Utilities
Additional Math Textbook Solutions
Calculus: Early Transcendentals (2nd Edition)
Pre-Algebra Student Edition
Introductory Statistics
Intro Stats, Books a la Carte Edition (5th Edition)
A First Course in Probability (10th Edition)
A Problem Solving Approach To Mathematics For Elementary School Teachers (13th Edition)
- 4. Suppose that the population of a certain collection of rare Brazilian ants is given by P(t)=(t+100) In(t+2), Where t represents the time in days. Find and interpret the rates of change of the population on the third day and on the tenth day.arrow_forwardFind all values of x for f (x)=(x²-4) 4 where the tangent line is horizontal. 5. Find the slope of the tangent line to the graph of f(x)=-√8x+1 at x=1. Write the equation of the tangent line.arrow_forward3. Find the derivative of each function. Label with appropriate derivative notation showing both dependent and independent variables. f(t)=4t(2t⭑+4)³ a. f(t)=4t (2t+4)³ (Answer must be factored.) b. y= 3 1 (2x³-4) 6arrow_forward
- 4.3 The Chain Rule 1. {Algebra review} Let f(x)=2x²-5 x and g(x)=6x+2. Find f[g(−5)]. 2. {Algebra review} Write h(x)=√√8x-3 as the composite of two functions f(x) and g(x). (There may be more than one way to do this.)arrow_forward4.4 Derivatives of Exponential Functions 1. Find derivatives of the functions defined as follows. a. g(t)=-3.4e b. y=e√x c. f(x)=(4x³+2)e³* d. y=- x²arrow_forward4.5 Derivatives of Logarithmic Functions 1. Find the derivative of each function. a) y=ln (-3x) b) f(u)=nu c) 9(x)=x-1 lnxarrow_forward
- 3. If the total revenue received from the sale of x items is given by R(x)=30ln (2x+1), While the total cost to produce x items is C(x)=✗, find the following. a) The marginal revenue b) The profit function P(x) (Hint: P(x)=R(x)-C(x)} c) The marginal profit when x=20 d) Interpret the results of part c).arrow_forward2. The sales of a new personal computer (in thousands) are given by S(t)=100-90€-04: Where t represents time in years. Find and interpret the rate of change of sales at each time. a) After 1 year b) After 5 years c) What is happening to the rate of change of sales as time goes on? d) Does the rate of change of sales ever equal zero?arrow_forward2. Find the equation of the line tangent to the graph of f(x)=ln(x²+5) at the point (-1, In 6). Do not approximate numbers.arrow_forward
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning





