a)
Interpretation:
The electron pushing mechanism for the formation of the organo-mercury intermediate obtained during the mercury catalyzed hydration of phenylacetylene is to be drawn.
Concept introduction:
In the first step attack of the π electrons of the triple bond on the electrophilic Hg2+ ion takes place to yield a mercury containing vinylic carbocation intermediate. In the second step nucleophilic attack of water takes place on the carbocation. A new C-O bond is formed leading to the formation of a protonated mercury containing enol. In the third step water abstracts a proton from the protonated enol to yield the organomercury intermediate.
To draw:
The electron pushing mechanism for the formation of the organo-mercury intermediate obtained during the mercury catalyzed hydration of ethynylbenzene.
b)
Interpretation:
The electron pushing mechanism for the formation of the organo-mercury intermediate obtained during the mercury catalyzed hydration of propyne is to be drawn.
Concept introduction:
In the first step attack of the π electrons of the triple bond on the electrophilic Hg2+ ion takes place to yield a mercury containing vinylic carbocation intermediate. In the second step nucleophilic attack of water takes place on the carbocation. A new C-O bond is formed leading to the formation of a protonated mercury containing enol. In the third step water abstracts a proton from the protonated enol to yield the organomercury intermediate.
To draw:
The electron pushing mechanism for the formation of the organo-mercury intermediate obtained during the mercury catalyzed hydration of propyne.
c)
Interpretation:
The electron pushing mechanism for the formation of the organo-mercury intermediate obtained during the mercury catalyzed hydration of 3-methyl-1-butyne is to be drawn.
Concept introduction:
In the first step attack of the π electrons of the triple bond on the electrophilic Hg2+ ion takes place to yield a mercury containing vinylic carbocation intermediate. In the second step nucleophilic attack of water takes place on the carbocation. A new C-O bond is formed leading to the formation of a protonated mercury containing enol. In the third step water abstracts a proton from the protonated enol to yield the organomercury intermediate.
To draw:
The electron pushing mechanism for the formation of the organo-mercury intermediate obtained during the mercury catalyzed hydration of 3-methyl-1-butyne.
Trending nowThis is a popular solution!
Chapter 9 Solutions
Organic Chemistry
- A problem often encountered in the oxidation of primary alcohols to acids is that esters are sometimes produced as by-products. For example, oxidation of ethanol yields acetic acid and ethyl acetate: Propose a mechanism to account for the formation of ethyl acetate. Take into account the reversible reaction between aldehydes and alcohols:arrow_forwardDraw reaction mechanisms with all reactants, arrows, intermediates, and products. Your mechanism must account for all the products if more than one product is formed. 4-methycyclohexanol with phosphoric acid H3PO4 to for 1-methycyclohexene, 3- methylcyclohexene and 4-methycyclohexenearrow_forwardEnamines can serve as enolate surrogates in reactions at the a-carbon. In the reaction sequence, the structures of the enamine addition product – the initial zwitterion and its neutral tautomer – are shown. Draw the structures of the two reactants forming these intermediates, and draw the structure of the final product, obtained via hydrolysis of the neutral intermediate. initial zwitterionic intermediate neutral intermediate tautomerization Reactants H,0 hydrolysis product Draw the two reactants. Draw the hydrolysis product. Select Draw Rings More Erase Select Draw Rings More Erase H Harrow_forward
- Draw the enol intermediate formed for this reactionarrow_forwardWe discussed a tetrahedral intermediate in the context of reactions of derivatives of carboxylic acids and nucleophilic substitution reactions. In all of these cases, the tetrahedral intermediate was described as an unstable structure that undergoes subsequent reactions. Briefly explain why tetrahedral intermediates are unstable.arrow_forwardWhen trans-2-chloro-1-cyclohexanol is treated with a base, cyclohexene oxide is the product. However, when cis-2-chloro-1-cyclohexanol is treated with a base, the product is cyclohexanone. Write the mechanism for each of the two reactions.arrow_forward
- As we will learn in Chapter 9, an epoxide is an ether with an oxygen atom in a three-membered ring. Epoxides can be made by intramolecular SN2 reactions of intermediates that contain a nucleophile and a leaving group on adjacent carbons, as shown.Assume that each of the following starting materials can be converted to an epoxide by this reaction. Draw the product formed (including stereochemistry) from each starting material. Why might some of these reactions be more difficult than others in yielding nucleophilic substitution products?arrow_forwardEnamines can serve as enolate surrogates in reactions at the a-carbon. In the following reaction sequence, the structures of the enamine addition product – the initial zwitterion and its neutral tautomer – are shown. Draw the structures of the two reactants forming these intermediates, and draw the structure of the final product, obtained via hydrolysis the neutral intermediate. reactants initial zwitterionic intermediate tautomerization hydrolysis product neutral intermediate NH н,о Н,о ↑arrow_forwardThe Stork reaction is a condensation reaction between an enamine donor and an α,β-unsaturated carbonyl acceptor. The overall reaction consists of a three-step sequence of formation of an enamine from a ketone, Michael addition to an α,β-unsaturated carbonyl compound, and hydrolysis of the enamine in dilute acid to regenerate the ketone. Consider the Stork reaction between acetophenone and 3-buten-2-one. Draw the structure of the product of the enamine formed between acetophenone and pyrrolidine. Draw the structure of the Michael addition product. Draw the structure of the final product.arrow_forward
- Propose a mechanism for the reaction of benzyl acetate with methylamine. Label theattacking nucleophile and the leaving group, and draw the transition state in which theleaving group leaves.arrow_forwardExplain the mechanism of acid catalysed hydration of an alkene to form corresponding alcohol.arrow_forwardGive the IUPAC name of the reactants that would give the following aldol condensation product.arrow_forward
- Organic Chemistry: A Guided InquiryChemistryISBN:9780618974122Author:Andrei StraumanisPublisher:Cengage LearningOrganic ChemistryChemistryISBN:9781305580350Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. FootePublisher:Cengage Learning
- Introduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage Learning