a)
Interpretation:
The terminal alkyne and the alkyl halide from which the compound shown can be obtained are to be shown. If two routes are possible both has to be listed.
Concept introduction:
The alkylation of
To show:
The terminal alkyne and the alkyl halide from which the compound shown can be obtained. Further to list both routes if two routes are possible.
b)
Interpretation:
The terminal alkyne and the alkyl halide from which the compound shown can be obtained are to be shown. If two routes are possible both has to be listed.
Concept introduction:
The alkylation of alkynes is an efficient method for preparing higher alkanes. Acetylene upon alkylation gives a terminal alkyne while further alkylation of a terminal alkyne leads to the formation of an internal alkyne. The actylide anion, being nucleophilic in nature, displaces the halide ion when treated with alkyl halide and gets itself attached to the alkyl group to yield a terminal alkyne. Only primary alkyl halides can be used in the reaction because when secondary and tertiary alkyl halides are used elimination of a hydrogen halide occurs instead of substitution.
To show:
The terminal alkyne and the alkyl halide from which the compound shown can be obtained. Further to list both routes if two routes are possible.
c)
Interpretation:
The terminal alkyne and the alkyl halide from which the compound shown can be obtained are to be shown. If two routes are possible both has to be listed.
Concept introduction:
The alkylation of alkynes is an efficient method for preparing higher alkanes. Acetylene upon alkylation gives a terminal alkyne while further alkylation of a terminal alkyne leads to the formation of an internal alkyne. The actylide anion, being nucleophilic in nature, displaces the halide ion when treated with alkyl halide and gets itself attached to the alkyl group to yield a terminal alkyne. Only primary alkyl halides can be used in the reaction because when secondary and tertiary alkyl halides are used elimination of hydrogen halide occurs instead of substitution.
To show:
The terminal alkyne and the alkyl halide from which the compound shown can be obtained. Further to list both routes if two routes are possible.
Trending nowThis is a popular solution!
Chapter 9 Solutions
Organic Chemistry
- 3. You may want to read paragraph 1.5 in your textbook before answering this question. Give electron configuration (short-hand notation is fine) for: (5 points) 3+ a) Manganese atom and Mn³+ b) Se atom c) Cu atom and Cu+arrow_forwardPlease correct answer and don't use hand ratingarrow_forwardNonearrow_forward
- Nonearrow_forwardHowever, why are intermolecular forces in metallic and ionic compounds not discussed as extensively? Additionally, what specific types of intermolecular attractions exist in metals and ionic compoundsarrow_forwardWhat is the preparation of 1 Liter of 0.1M NH4Cl buffer at pH 9.0 with solid NH4Cl and 0.1M NaOH. How would I calculate the math to describe this preparation? How would I use Henderson-Hasselbach equation?arrow_forward
- C Predict the major products of this organic reaction. Be sure you use wedge and dash bonds when necessary, for example to distinguish between major products with different stereochemistry. : ☐ + x G C RCO₂H Click and drag to start drawing a structure.arrow_forwardFill in the blanks by selecting the appropriate term from below: For a process that is non-spontaneous and that favors products at equilibrium, we know that a) ΔrG∘ΔrG∘ _________, b) ΔunivSΔunivS _________, c) ΔsysSΔsysS _________, and d) ΔrH∘ΔrH∘ _________.arrow_forwardHighest occupied molecular orbital Lowest unoccupied molecular orbital Label all nodes and regions of highest and lowest electron density for both orbitals.arrow_forward
- Relative Intensity Part VI. consider the multi-step reaction below for compounds A, B, and C. These compounds were subjected to mass spectrometric analysis and the following spectra for A, B, and C was obtained. Draw the structure of B and C and match all three compounds to the correct spectra. Relative Intensity Relative Intensity 20 NaоH 0103 Br (B) H2504 → (c) (A) 100- MS-NU-0547 80 40 20 31 10 20 100- MS2016-05353CM 80 60 100 MS-NJ-09-3 80 60 40 20 45 J.L 80 S1 84 M+ absent राग 135 137 S2 62 164 166 11 S3 25 50 75 100 125 150 175 m/zarrow_forwardDon't used hand raiting and don't used Ai solutionarrow_forwardDon't used hand raitingarrow_forward
- Organic Chemistry: A Guided InquiryChemistryISBN:9780618974122Author:Andrei StraumanisPublisher:Cengage LearningOrganic ChemistryChemistryISBN:9781305580350Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. FootePublisher:Cengage Learning