Concept explainers
A
Want to see the full answer?
Check out a sample textbook solutionChapter 8 Solutions
Fundamentals of Heat and Mass Transfer
Additional Engineering Textbook Solutions
Applied Fluid Mechanics (7th Edition)
Statics and Mechanics of Materials (5th Edition)
INTERNATIONAL EDITION---Engineering Mechanics: Statics, 14th edition (SI unit)
Manufacturing Engineering & Technology
Introduction To Finite Element Analysis And Design
Thermodynamics: An Engineering Approach
- Determine the rate of heat transfer per meter length to a light oil flowing through a 2.5-cm-ID, 60-cm-long copper tube at a velocity of 0.03 m/s. The oil enters the tube at 16C, and the tube is heated by steam condensing on its outer surface at atmospheric pressure with a heat transfer coefficient of 11.3 kW/m K. The properties of the oil at various temperatures are listed in the following table: Temperature, T(C) 15 30 40 65 100 (kg/m3) 912 912 896 880 864 c(kJ/kgK) 1.80 1.84 1.925 2.0 2.135 k(W/mK) 0.133 0.133 0.131 0.129 0.128 (kg/ms) 0.089 0.0414 0.023 0.00786 0.0033 Pr 1204 573 338 122 55arrow_forwardAn uninsulated 100-mm diameter steam pipe runs for 25-meters inside a room whose walls and air are at a temperature of 25C .The superheated steam inside the pipe maintains the temperature at the pipe surface at 150C. If the natural convection heat transfer coefficient of the air outside the pipe is 10 W/(m^2)(k)and the surface emissivity is 0.8, compute for the total thermal resistance at the outside surface of the pipe in K/W.arrow_forwardQUESTION 3: Warm air is blown over the inner surface of the windshield of an automobile to defrost ice accumulated on the outer surface. The windshield has a thickness of 5 mm and thermal conductivity of 1.4 W/m-K. The outside ambient temperature is -10°C and the convection heat transfer coefficient is 200 W/m²-K, while the ambient temperature inside the automobile is 25°C. Determine the value of the convection heat transfer coefficient for the warm air blowing over the inner surface of the windshield necessary to cause the accumulated ice to begin melting.arrow_forward
- 3- Pipes with inner and outer diameter of 50mm and 60mm, respectively, are used for transporting superheated vapor in a manufacturing plant. The pipes with thermal conductivity of 16 W/m.K are connected together by flanges with combined thickness of 20mm and outer diameter of 90mm. Air condition surrounding the pipes has a temperature of 25C and a convection heat transfer coefficient of 10 W/m².K. If the inner surface temperature of the pipe is maintained at a constant temperature of 150C, determine the temperature at the base of the flange and the rate if heat loss through the flange. Air, 25 °C h= 10 W/m².ºC D;= 90 mm D;, = 50 mm T; = 150 °C Pipe, k = 16 W/m•°C D,= 60 mm t= 20 mmarrow_forwardOil whose temperature is 30°C is flowed through a pipe with a diameter of 50 cm. The pipe is in an environment where the temperature is 20°C. So that not a lot of heat comes out of the pipe, the pipe is wrapped with an insulating material (k = 0.007 W/mK) as thick as 5 cm. If the convection coefficient of the outer surface of the pipe is 12 W/m²K, calculate the heat flow from the pipe per meter of length.arrow_forwardA pipe 30 m long with an outer diameter of 75 mm is used to deliver steam at a rate of 1500 kg / hour. The steam pressure is 198.53 kPa entering the pipe with a quality of 98%. The pipe that needs to be insulated with a thermal conductivity of 0.2 W / (m K) so that the quality of the steam only decreases slightly to 95%. The temperature of the outer surface of the insulation is assumed to be 25 ° C. The conductive of the pipe material and the situation of no pressure drop in the pipe. A. Determine the enthalpy of incoming vapor = Answer kJ / kg. b. Determine the enthalpy of steam that comes out = Answer kJ / kg. c. Determine the change / loss of steam heat along the flow = Answer watt. d. Determine the minimum required insulation thickness = Answer cm.arrow_forward
- The thickness of one wall is 0.07 m. The right side of the wall is exposed to ambient air with a temperature of T = 310 K and Tsur= 300 K. If the external surface temperature of the wall (right side) is 500 K and the coefficient of heat transfer is h=30W/m²K, the rate of propagation is 0.78, and the coefficient of heat transmission of the wall is k=0.86 W/m²K, what is the temperature of the inner wall?arrow_forwardThe building is in an environment of 30 ° C. The walls are covered with an insulating layer of 4 cm thickness whose thermal conductivity is 1.8 W / (m K), and the temperature of the inner wall of the insulation is 320 ° C. Wall heat loss to the environment occurs by convection. Calculate the convection heat transfer coefficient value on the outer surface of the insulation to ensure that the outer surface temperature does not exceed 40 ° C. Convection coefficient = AnswerW / m² ° C.arrow_forwardConsider a long, insulated cable supplying power to a community. It is elevated in the air by using poles. The ambient air temperature is 20oC and the convective heat transfer coefficient is h = 20 W/m2.K. Radiation exchange between the cable surface and the environment can be neglected. Make your calculations considering per meter-length. The wire carries 500 Amp current and has a resistance of 0.0001 Ohm/m. The diameter of the solid core wire is 1.0 cm and has a thermal conductivity of k = 20 W/m.K The electrically insulating material covering the wire-core has a thickness of 0.5 cm with a thermal conductivity of k = 0.01 W/m.K a) What is the rate of heat loss from the cable to the environment in kW/meter? b) What is the outside surface (exposed to air) temperature of the cable? c) What is the temperature of the interface between the insulation sleeve and the core-wire carrying the electric power? If the sleeve material has to remain below 100 oC for the long term, would this…arrow_forward
- A transparent film will be glued onto an upper surface of a solid plate within a heated chamber. For common gluing, the temperature between the glue, a film and the solid board must be kept at 70 °C. The transparent film has a thickness of 1 mm and thermal conductivity 0.05 W/mK, while the solid board is 13 mm thick. thickness and thermal conductivity of 1.2 W / mK. Inside the climate chamber, the convection heat transfer coefficient is 70 W/m²K. The bottom surface of the solid plate is kept at 52 °C, determines the temperature inside the heated chamber and the temperature of the surface of the transparent film. Assume negligible thermal contact resistance.arrow_forwardQuestion 2 A 2.2-mm-diameter and 10-m-long electric wire is tightly wrapped with a 1-mm-thick plastic cover whose thermal conductivity is k = 0.1 W/m·K. Electrical measurements indicate that a current of 13 A passes through the wire and there is a voltage drop of 8 V along the wire. If the insulated wire is exposed to a medium at T∞ = 19°C with a heat transfer coefficient of h = 20 W/m2·K, determine the temperature at the interface of the wire and the plastic cover in steady operation. Also determine if doubling the thickness of the plastic cover will increase or decrease this interface temperature.arrow_forwardA steel tube, with a thermal conductivity of 50 W /m K, has an inner diameter of 20-mm and outer diameter of 26-mm. Hot gases flow over the tube with a convection heat transfer coefficient of 200 W/m2 K; while, cold water flows through the tube with a convection heat transfer coefficient of 8000 W/m2 K. What is the cold-side overall heat transfer coefficient in W/m2 K?arrow_forward
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning