Fundamentals of Heat and Mass Transfer
7th Edition
ISBN: 9780470917855
Author: Bergman, Theodore L./
Publisher: John Wiley & Sons Inc
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 8, Problem 8.107P
To determine
The water outlet temperature and the chip power dissipation.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Calculate the capillary effect in mm in a glass tube of 4mm diameter, when immersed in (1)water, (2)mercury. The temperature of the liquid is
25°C and the values of surface tensions of water and mercury at 25°C in contact with air is 0.0725 and 0.52N/m respectively. The angle of contact
for water is 0° and 130° for mercury. Take the density of water 1000 kg/m3, specific gravity of mercury is 13.6.
The capillary effect of water in mm is equal to=
The capillary effect of mercury in mm is equal to=
Calculate the capillary effect in mm in a glass tube of 2mm diameter, when immersed in (1)water, (2)mercury. The temperature of the liquid is 25°C and the values of surface tensions of water and
mercury at 25°C in contact with air is 0.0755 and 0.52N/m respectively. The angle of contact for water is 0° and 130° for mercury. Take the density of water 1000 kg/m³, specific gravity of mercury
is 13.6.
(ENTER ONLY THE VALUES BY REFERRING THE UNITS GIVEN)
The capillary effect of water in mm is equal to=
The capillary effect of mercury in mm is equal to=
Show that in a parabolic potential well, the spacing between the energy levelsis constant. In semiconductors, parabolic potential wells are often produced byusing narrow square potential wells where the well to barrier width ratio graduallychanges. Use the virtual crystal approximation to design a GaAs/AlAs parabolicwell where the level spacing for the electron is approximately 8meV. (Hint: This isthe harmonic oscillatorproblem.)
Chapter 8 Solutions
Fundamentals of Heat and Mass Transfer
Ch. 8 - Fully developed conditions are known to exist for...Ch. 8 - What is the pressure drop associated with water at...Ch. 8 - Water at 27C flows with a mean velocity of 1 m/s...Ch. 8 - An engine oil cooler consists of a bundle of 25...Ch. 8 - For fully developed laminar flow through a...Ch. 8 - Consider pressurized water, engine oil (unused),...Ch. 8 - Velocity and temperature profiles for laminar flow...Ch. 8 - At a particular axial station, velocity and...Ch. 8 - In Chapter 1, it was stated that for...Ch. 8 - When viscous dissipation is included. Equation...
Ch. 8 - Consider a circular tube of diameter D and length...Ch. 8 - Consider flow in a circular tube. Within the test...Ch. 8 - Consider a cylindrical nuclear fuel rod of length...Ch. 8 - Consider the laminar thermal boundary layer...Ch. 8 - In a particular application involving fluid flow...Ch. 8 - A flat-plate solar collector is used w heat...Ch. 8 - Atmospheric air enters the heated section of a...Ch. 8 - Fluid enters a tube with a flow rate of 0.015kg/s...Ch. 8 - Water at 300 K and a flow rate of 5kg/s enters a...Ch. 8 - Slug flow is an idealized tube flow condition for...Ch. 8 - Superimposing a control volume that is...Ch. 8 - An experimental nuclear core simulation apparatus...Ch. 8 - Water at 20°C and a flow rate of 0.1kg/s enters a...Ch. 8 - Engine oil is heated by flowing through a circular...Ch. 8 - Engine oil flows through a 25mm -diameter tube at...Ch. 8 - In the final stages of production, a...Ch. 8 - An oil preheater consists of a single tube of 10mm...Ch. 8 - Engine oil flows at a rate of 1kg/s through a 5mm...Ch. 8 - Air at p=1atm enters a thin-walled ( D=5-mm...Ch. 8 - To cool a summer home without using a vapor...Ch. 8 - Batch processes are often used in chemical and...Ch. 8 - The evaporator section of a heat pump is installed...Ch. 8 - Water flowing at 2kg/s through a 40mm diameter...Ch. 8 - Consider the conditions associated with the hot...Ch. 8 - A thick-walled, stainless steel (AISI 316) pipe of...Ch. 8 - An air heater for an industrial application...Ch. 8 - Consider fully developed conditions in a circular...Ch. 8 - Consider the encased pipe of Problem 4.29, but now...Ch. 8 - Water flows through a thick-wailed tube with an...Ch. 8 - Atmospheric air enters a 10m -long. 150mm...Ch. 8 - NaK (45%/55). which is an alloy of sodium and...Ch. 8 - The products of combustion from a burner are...Ch. 8 - Liquid mercury at 0.5kg/s is lo be heated from 300...Ch. 8 - The surface of a 50-mm-diameter. thin-walled tube...Ch. 8 - Consider a horizontal, thin-walled circular tube...Ch. 8 - Consider pressurized liquid water flowing at...Ch. 8 - Cooling water flows through the 25.4-mm -diameter...Ch. 8 - The air passage for cooling a gas turbine vane can...Ch. 8 - The core of a high-temperature, gas-cooled nuclear...Ch. 8 - Air at 200kPa enters a 2-m -long, thin-walled tube...Ch. 8 - Heated air required for a food-drying process is...Ch. 8 - Consider laminar flow of a fluid with Pr=4 that...Ch. 8 - A common procedure for cooling a high-performance...Ch. 8 - One way to cool chips mounted on the circuit...Ch. 8 - Refrigerant- 134a is being transported a 0.1 kg/s...Ch. 8 - Oil at 150°C flows slowly through a long,...Ch. 8 - Exhaust gases from a wire processing oven are...Ch. 8 - A hot fluid passes through a thin-walled tube of...Ch. 8 - Consider a thin-walled tube of 10mm diameter and...Ch. 8 - Water at a flow rate of m =0.215kg/s is cooled...Ch. 8 - To maintain pump power requirements per unit flow...Ch. 8 - Consider a thin-walled, metallic tube of length...Ch. 8 - A circular tube of diameter D=0.2mm and length...Ch. 8 - Repeat Problem 8.66 for a circular tube of...Ch. 8 - Heat is to be removed from a reaction vessel...Ch. 8 - A healing contractor must heat 0.2kg/s of water...Ch. 8 - A thin-walled tube with a diameter of 6 mm and...Ch. 8 - A 50mm -diameter, thin—walled metal pipe covered...Ch. 8 - A thin-walled, uninsulated 0.3m -diameter duct is...Ch. 8 - Pressurized water at Tm,i=200C is pumped at...Ch. 8 - Water at 290K and 0.2kg/s flows through a Teflon...Ch. 8 - The temperature of flue gases flowing through the...Ch. 8 - In a biomedical supplies manufacturing process, a...Ch. 8 - Consider the ground source heat pump of Problem...Ch. 8 - For a sharp-edged inlet and a combined entry...Ch. 8 - Fluid enters a thin-walled rube of 5-mni diameter...Ch. 8 - Air at 3104kg/s and 27C enters a rectangular duct...Ch. 8 - Air at 25C flows at 30106kg/s within 100mm -long...Ch. 8 - A cold plate is an active cooling device that is...Ch. 8 - The cold plate design of Problem 8.82 has not been...Ch. 8 - A device that recovers heat from high-temperature...Ch. 8 - Air at 1 atm and 285K enters a 2-m -long...Ch. 8 - A double-wall heat exchanger is used to transfer...Ch. 8 - Consider laminar, fully developed flow in a...Ch. 8 - You have been asked to perform a feasibility study...Ch. 8 - A coolant flows through a rectangular channel...Ch. 8 - An electronic circuit board dissipating 50W is...Ch. 8 - To slow down large prime movers like locomotives,...Ch. 8 - A printed circuit board (PCB) is cooled by...Ch. 8 - Water at m=0.02kg/s and Tm,i=20C enters an annular...Ch. 8 - tFor the conditions of Problem 8.93, how tong must...Ch. 8 - Referring 10 Figure 8.11, consider conditions in...Ch. 8 - Consider the air healer of Problem 8.38, but now...Ch. 8 - Consider a concentric tube annulus for which the...Ch. 8 - It is common practice (o recover waste heat from...Ch. 8 - A concentric lube arrangement, for which the inner...Ch. 8 - Consider sterilization of the pharmaceutical...Ch. 8 - An engineer proposes to insert a solid rod of...Ch. 8 - An electrical power transformer of diameter 230mm...Ch. 8 - A bayonet cooler is used to reduce the temperature...Ch. 8 - The mold used in an injection molding process...Ch. 8 - Prob. 8.107PCh. 8 - Prob. 8.108PCh. 8 - Consider the microchannel cooling arrangement...Ch. 8 - The onset of turbulence in a gas flowing within a...Ch. 8 - Due to its comparatively large thermal...Ch. 8 - A novel scheme for dissipating heat from the chips...Ch. 8 - An experiment is designed to study microscale...Ch. 8 - Determine the tube diameter that corresponds to a...Ch. 8 - An experiment is devised to measure liquid flow...Ch. 8 - In the processing of very long plastic tubes of...Ch. 8 - Air at 300K and a flow rate of 3kg/h passes upward...Ch. 8 - What is the convection mass transfer coefficient...Ch. 8 - Air flowing through a tube of 75mm diameter passes...Ch. 8 - Consider gas flow of mass density and rate m...Ch. 8 - Atmospheric air at 25C and 3104kg/s flows through...Ch. 8 - Air at 25C and 1atm is in fully developed flow at...Ch. 8 - A humidifier consists of a bundle of vertical...Ch. 8 - The final step of a manufacturing process in which...Ch. 8 - Dry air is inhaled at a rate of lo liter/win...Ch. 8 - A mass transfer Operation is preceded by laminar...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Calculate the capillary effect in mm in a glass tube of 4mm diameter, when immersed in (1)water, (2)mercury. The temperature of the liquid is 25°C and the values of surface tensions of water and mercury at 25°C in contact with air is 0.0735 and 0.59N/m respectively. The angle of contact for water is 0° and 130° for mercury . Take the density of water 1000 kg/m³ , specific gravity of mercury is 13.6.arrow_forwardA tube bank uses an aligned array with 10 mm diameter tubes and ST=SL=60 mm. The arrangement is 10 lines of tubes with 7 tubes in each. Cold water flows inside the tubes and their surface is kept at 30 °C, while the combustion gases flow cross-flow to the bank of tubes, the inlet temperature of the gases is 450 °C and their velocity is 15 m/s. Combustion gases can be approximated as air at 1 atm. Determine: A) The outlet temperature of the combustion gasesB) The heat transfer coefficientC) The amount of heat transferred through the bank of tubesarrow_forwardheat transfer ,(thanks) The temperature of the outer surface of a vertical tube through which hot water is flowing is 275 K. The temperature of the external environment where the tube is located is 232K. The outer diameter of the tube is 30 mm and the length is 150 mm. Its work simply disappears from the side surfaces of the cylinder.a. Calculate the loss, ignoring the radiation losses.b. Calculate the loss from the pipe with the increase of natural convection(s=0.55 for steel tube)arrow_forward
- A microwave dinner has the instructions listed below. In this problem, you will explain how following the instructions affect the heat transfer into the meal. (The meal starts off frozen, and is covered with a thin piece of plastic "film" or covering when it is taken out of the box. The vegetables are separate from the beef and potatoes.) Instructions1. Cut slit in film over vegetables.2. Microwave on high 4 minutes3. Turn back film from beef and potatoes. Stir beef and potatoes. Replace film. Return tray to microwave oven4. Microwave on high 3 minutes.5. Let stand 2 minutes in microwave oven., Stir beef and potatoes.a. How does each of the steps above (cut slit in film, stir beef and potatoes, etc) affect the heat transfer to the food? Make sure to consider conduction, convection, and radiation where appropriate. b. The instructions ask you to stir the beef and potatoes, but not the vegetables. From this, what can you tell about how each type of food receives and transfers heat?…arrow_forwardWhat is true optionarrow_forwardCalculate the quantity of heat conducted per minute through a duralumin circular disc 143 mm diameter and 46 mm thick when the temperature across the thickness of the plate is 10 ℃. Take the coefficient of thermal conductivity of duralumin as 33,000 Btu/hr-ft-R.arrow_forward
- Let's say a 3.0 gram copper wafer is dropped from a height of 50.0 meters. If 60% of the potential energy lost in the drop could be converted to thermal energy used to heat the copper from an initial temperature of 25 degrees celsius, what would the final temperature of the copper wafer? Would the answer be different if the wafer has a mass greater than 3 grams? Note: the specific heat of copper is 387 J/(kg*K). The temperature is between 25.8 and 26.0 degrees celsius, yes the bigger the mass the greater the energy. O The temperature is between 25.6 and 25.8 celsius, answer does not depend on mass. O The temperature is between 25.0 and 25.2 celsius, answer does not depend on mass. O The temperature is 25.5 and of course the more mass something has the greater energy will be needed to raise the temperature. The temperature is 26.2 and if the mass is doubled so will be the change in temperature. O The temperature is 25.9 degrees celsius and the answer does not depend on mass. O The…arrow_forward7 An electric heater is made of thin conducting wires forming a mesh. The diameter of the wire is 0.5 mm and the total length of all the wires is 2 m. The temperature of the wire is 1,000 K. The heat from the wire is dissipated to the air at 300 K flowing through the wire mesh at a velocity of 5 m/s. Ignore radiation of the heater and assume it has a uniform temperature. T Const = (a) Calculate the convection heat transfer coefficient(h) between the air and the heater. (b) If the total electrical resistance of the heater is 10 2, what is the electrical current? (c) Calculate the Biot number of the heater. V=IR (d) The electrical current is suddenly cut off. How long does it take for the heater temperature to drop to 500 K? Properties of the air: pa = 0.7 kg/m³, Cp,a= 1030 J/kg K, va = 38.8×106 m²/s, ka=0.041 W/m•K, aa =56.7×106 m²/s, and Pra = 0.684. Properties of the heater: ph = 8900 kg/m³, Cp,h= 380 J/kg K, and kn = 400 W/m.K.arrow_forwardNutrient media is flowing at a rate of 1.5 L min in a tube that is 5 mm in diameter. The walls of the tube are covered with antibody-producing cells, and these cells are anchored to the tube wall by their interaction with a special coating material that was applied to the surface of the tube. If one of these cells has a surface area of 500 um², what is the amount of force that each cell must resist as a result of the flow of this fluid in the tube? Assume the viscosity of the nutrient media is 1.2 cP=0.0012 Pa sec.arrow_forward
- Kindly help me to answer this. Thankyou in advance!arrow_forward2. A steam line is covered with two successive layers of insulation. The 1.6 in thick layer in contact with the pipe is asbestos which is covered with a 1.4 inch thickness of magnesia insulation. The internal pipe diameter is 3 in, the pipewall thickness is 0.40 in made from common brick. The steam temperature is 850ºF, and the internal surface film coefficient is 50 Btu/hr.ft².F, while the ambient outer temperature is 105°F and the outer surface film coefficient is 3.0 Btu/hr.ft².F. Calculate the following: a. value of U based upon the external area of the magnesia covering, Btu/hr.ft2.F b. heat loss from the steam for a length of 190 feet of pipe, Btu/hrarrow_forwardA storage tank consists of a cylindrical section that has a length and inner and inner diameter of L=2 m and Di=1 m, respectively, and two hemispherical end sections. The tank is constructed form 20 mm thick glass (pyrex) and is exposed to ambient air for which the temperature is 300 K. The tank is used to store heated oil, which maintains the inner surface at a temperature of 400 K. Determine the electrical power that must be supplied to a heater submerged in the oil if the prescribed conditions are to be maintained. Radiation effects may be neglected, and the pyrex may be assumed to have a thermal conductivity of 1.4 W/m.K.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Understanding Conduction and the Heat Equation; Author: The Efficient Engineer;https://www.youtube.com/watch?v=6jQsLAqrZGQ;License: Standard youtube license