Fundamentals of Heat and Mass Transfer
7th Edition
ISBN: 9780470917855
Author: Bergman, Theodore L./
Publisher: John Wiley & Sons Inc
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 8, Problem 8.67P
Repeat Problem 8.66 for a circular tube of diameter
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
3. Water at an average bulk temperature of 80 F flows inside a horizontal smooth tube with wall
temperature maintained at 180 F. The tube length is 6 ft and the diameter is 0.5 in. The flow
velocity is 0.4 ft/s. Calculate the heat transfer rate. For water, c = 1 Btu/lb-F and k = 4.27 Btu-
in/hr-ft2-F. *
Current Attempt in Progress
Consider pressurized water, engine oil (unused), and Nak (22 %/78%) flowing in a 20-mm-diameter tube.
(a) Determine the mean velocity, in m/s, the hydrodynamic entry length, in m, and the thermal entry length, in m, for each of the fluids
when the fluid temperature is 366 K and the flow rate is 0.014 kg/s.
(b) Determine the mass flow rate, in kg/s, the hydrodynamic entry length, in m, and the thermal entry length, in m, for water and engine
oil at 300 and 400 K and a mean velocity of 0.018 m/s.
Part A
Your answer is incorrect.
Determine the mean velocity, in m/s, the hydrodynamic entry length, in m, and the thermal entry length, in m, for each of the fluids
when the fluid temperature is 366 K and the flow rate is 0.014 kg/s.
Liquid
water
engine oil
Nak
(m/s)
!
i
XALA(M)
xer (m)
Attempts: unlimited Submit Answer
Consider pressurized water, engine oil (unused), and Nak (22%/78%) flowing in a 20-mm-diameter tube.
(a) Determine the mean velocity, in m/s, the hydrodynamic entry length, in m, and the thermal entry length, in m, for each of the fluids
when the fluid temperature is 366 K and the flow rate is 0.01 kg/s.
(b) Determine the mass flow rate, in kg/s, the hydrodynamic entry length, in m, and the thermal entry length, in m, for water and engine
oil at 300 and 400 K and a mean velocity of 0.022 m/s.
Part A
Determine the mean velocity, in m/s, the hydrodynamic entry length, in m, and the thermal entry length, in m, for each of the fluids
when the fluid temperature is 366K and the flow rate is 0.01 kg/s.
Liquid
Um (m/s)
Xfdh (m)
Xfd,t (m)
water
i
engine oil
i
i
i
Nak
i
Chapter 8 Solutions
Fundamentals of Heat and Mass Transfer
Ch. 8 - Fully developed conditions are known to exist for...Ch. 8 - What is the pressure drop associated with water at...Ch. 8 - Water at 27C flows with a mean velocity of 1 m/s...Ch. 8 - An engine oil cooler consists of a bundle of 25...Ch. 8 - For fully developed laminar flow through a...Ch. 8 - Consider pressurized water, engine oil (unused),...Ch. 8 - Velocity and temperature profiles for laminar flow...Ch. 8 - At a particular axial station, velocity and...Ch. 8 - In Chapter 1, it was stated that for...Ch. 8 - When viscous dissipation is included. Equation...
Ch. 8 - Consider a circular tube of diameter D and length...Ch. 8 - Consider flow in a circular tube. Within the test...Ch. 8 - Consider a cylindrical nuclear fuel rod of length...Ch. 8 - Consider the laminar thermal boundary layer...Ch. 8 - In a particular application involving fluid flow...Ch. 8 - A flat-plate solar collector is used w heat...Ch. 8 - Atmospheric air enters the heated section of a...Ch. 8 - Fluid enters a tube with a flow rate of 0.015kg/s...Ch. 8 - Water at 300 K and a flow rate of 5kg/s enters a...Ch. 8 - Slug flow is an idealized tube flow condition for...Ch. 8 - Superimposing a control volume that is...Ch. 8 - An experimental nuclear core simulation apparatus...Ch. 8 - Water at 20°C and a flow rate of 0.1kg/s enters a...Ch. 8 - Engine oil is heated by flowing through a circular...Ch. 8 - Engine oil flows through a 25mm -diameter tube at...Ch. 8 - In the final stages of production, a...Ch. 8 - An oil preheater consists of a single tube of 10mm...Ch. 8 - Engine oil flows at a rate of 1kg/s through a 5mm...Ch. 8 - Air at p=1atm enters a thin-walled ( D=5-mm...Ch. 8 - To cool a summer home without using a vapor...Ch. 8 - Batch processes are often used in chemical and...Ch. 8 - The evaporator section of a heat pump is installed...Ch. 8 - Water flowing at 2kg/s through a 40mm diameter...Ch. 8 - Consider the conditions associated with the hot...Ch. 8 - A thick-walled, stainless steel (AISI 316) pipe of...Ch. 8 - An air heater for an industrial application...Ch. 8 - Consider fully developed conditions in a circular...Ch. 8 - Consider the encased pipe of Problem 4.29, but now...Ch. 8 - Water flows through a thick-wailed tube with an...Ch. 8 - Atmospheric air enters a 10m -long. 150mm...Ch. 8 - NaK (45%/55). which is an alloy of sodium and...Ch. 8 - The products of combustion from a burner are...Ch. 8 - Liquid mercury at 0.5kg/s is lo be heated from 300...Ch. 8 - The surface of a 50-mm-diameter. thin-walled tube...Ch. 8 - Consider a horizontal, thin-walled circular tube...Ch. 8 - Consider pressurized liquid water flowing at...Ch. 8 - Cooling water flows through the 25.4-mm -diameter...Ch. 8 - The air passage for cooling a gas turbine vane can...Ch. 8 - The core of a high-temperature, gas-cooled nuclear...Ch. 8 - Air at 200kPa enters a 2-m -long, thin-walled tube...Ch. 8 - Heated air required for a food-drying process is...Ch. 8 - Consider laminar flow of a fluid with Pr=4 that...Ch. 8 - A common procedure for cooling a high-performance...Ch. 8 - One way to cool chips mounted on the circuit...Ch. 8 - Refrigerant- 134a is being transported a 0.1 kg/s...Ch. 8 - Oil at 150°C flows slowly through a long,...Ch. 8 - Exhaust gases from a wire processing oven are...Ch. 8 - A hot fluid passes through a thin-walled tube of...Ch. 8 - Consider a thin-walled tube of 10mm diameter and...Ch. 8 - Water at a flow rate of m =0.215kg/s is cooled...Ch. 8 - To maintain pump power requirements per unit flow...Ch. 8 - Consider a thin-walled, metallic tube of length...Ch. 8 - A circular tube of diameter D=0.2mm and length...Ch. 8 - Repeat Problem 8.66 for a circular tube of...Ch. 8 - Heat is to be removed from a reaction vessel...Ch. 8 - A healing contractor must heat 0.2kg/s of water...Ch. 8 - A thin-walled tube with a diameter of 6 mm and...Ch. 8 - A 50mm -diameter, thin—walled metal pipe covered...Ch. 8 - A thin-walled, uninsulated 0.3m -diameter duct is...Ch. 8 - Pressurized water at Tm,i=200C is pumped at...Ch. 8 - Water at 290K and 0.2kg/s flows through a Teflon...Ch. 8 - The temperature of flue gases flowing through the...Ch. 8 - In a biomedical supplies manufacturing process, a...Ch. 8 - Consider the ground source heat pump of Problem...Ch. 8 - For a sharp-edged inlet and a combined entry...Ch. 8 - Fluid enters a thin-walled rube of 5-mni diameter...Ch. 8 - Air at 3104kg/s and 27C enters a rectangular duct...Ch. 8 - Air at 25C flows at 30106kg/s within 100mm -long...Ch. 8 - A cold plate is an active cooling device that is...Ch. 8 - The cold plate design of Problem 8.82 has not been...Ch. 8 - A device that recovers heat from high-temperature...Ch. 8 - Air at 1 atm and 285K enters a 2-m -long...Ch. 8 - A double-wall heat exchanger is used to transfer...Ch. 8 - Consider laminar, fully developed flow in a...Ch. 8 - You have been asked to perform a feasibility study...Ch. 8 - A coolant flows through a rectangular channel...Ch. 8 - An electronic circuit board dissipating 50W is...Ch. 8 - To slow down large prime movers like locomotives,...Ch. 8 - A printed circuit board (PCB) is cooled by...Ch. 8 - Water at m=0.02kg/s and Tm,i=20C enters an annular...Ch. 8 - tFor the conditions of Problem 8.93, how tong must...Ch. 8 - Referring 10 Figure 8.11, consider conditions in...Ch. 8 - Consider the air healer of Problem 8.38, but now...Ch. 8 - Consider a concentric tube annulus for which the...Ch. 8 - It is common practice (o recover waste heat from...Ch. 8 - A concentric lube arrangement, for which the inner...Ch. 8 - Consider sterilization of the pharmaceutical...Ch. 8 - An engineer proposes to insert a solid rod of...Ch. 8 - An electrical power transformer of diameter 230mm...Ch. 8 - A bayonet cooler is used to reduce the temperature...Ch. 8 - The mold used in an injection molding process...Ch. 8 - Prob. 8.107PCh. 8 - Prob. 8.108PCh. 8 - Consider the microchannel cooling arrangement...Ch. 8 - The onset of turbulence in a gas flowing within a...Ch. 8 - Due to its comparatively large thermal...Ch. 8 - A novel scheme for dissipating heat from the chips...Ch. 8 - An experiment is designed to study microscale...Ch. 8 - Determine the tube diameter that corresponds to a...Ch. 8 - An experiment is devised to measure liquid flow...Ch. 8 - In the processing of very long plastic tubes of...Ch. 8 - Air at 300K and a flow rate of 3kg/h passes upward...Ch. 8 - What is the convection mass transfer coefficient...Ch. 8 - Air flowing through a tube of 75mm diameter passes...Ch. 8 - Consider gas flow of mass density and rate m...Ch. 8 - Atmospheric air at 25C and 3104kg/s flows through...Ch. 8 - Air at 25C and 1atm is in fully developed flow at...Ch. 8 - A humidifier consists of a bundle of vertical...Ch. 8 - The final step of a manufacturing process in which...Ch. 8 - Dry air is inhaled at a rate of lo liter/win...Ch. 8 - A mass transfer Operation is preceded by laminar...
Additional Engineering Textbook Solutions
Find more solutions based on key concepts
Steady state conduction rate to the warm compressor to the net power produces theoretically by thermodynamic ba...
Introduction to Heat Transfer
The spring of k and unstretched length 1.5R is attached to the disk at a radial distance of 0.75R from the cent...
Engineering Mechanics: Statics
A pipe flowing light oil has a manometer attached, as shown in Fig, P1.52. What is the absolute pressure in pip...
Fundamentals Of Thermodynamics
Describe the structural changes that take place when a plain-carbon eutectoid steel is slowly cooled from the a...
Foundations of Materials Science and Engineering
Define or describe each type of fluid: (a) viscoelastic fluid (b) pseudoplastic fluid (c) dilatant fluid (d) Bi...
Fluid Mechanics: Fundamentals and Applications
What is the importance of modeling in engineering? How are the mathematical models for engineering processes pr...
Heat and Mass Transfer: Fundamentals and Applications
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 6.1 Determine the heat transfer coefficient at the stagnation point and the average value of the heat transfer coefficient for a single 5-cm-OD, 60-cm-long tube in cross-flow. The temperature of the tube surface is , the velocity of the fluid flowing perpendicular to the tube axis is 6 m/s, and the temperature of the fluid is . Consider the following fluids: (a) air, (b) hydrogen, and (c) water.arrow_forward6.3 Steam at 100 kPa and is flowing across a 5-cm- OD tube at a velocity of 6 m/s. Estimate the Nusselt number, the heat transfer coefficient, and the rate of heat transfer per meter length of pipe if the pipe is at .arrow_forwardPlease help. I am not sure how to approach this problem. This problem involves heat transfer and internal flow within a pipe. Thank you.arrow_forward
- Heat transfer problem Water flows through a thin-walled cylindrical tube of diameter 1 cm, maintained at a uniform temperature, ?s = 360 K. The inlet and outlet temperature of water was found to be ?i= 280 K and ?o = 355 K, respectively. (a) What is the log mean temperature difference in this case? (b) If the mass flow rate is 0.005 kg/s, what is the total rate of heat transfer from the tube to the water? (c) What is the Reynolds number corresponding to the given flow conditions? (d) Assuming fully developed flow in the entire tube, what should be the length of the tube to allow the abovementioned operating conditions ?arrow_forwardAir with an average temperature of 25oC flows inside a tube arrangement consisting 10 rows of tubes. Each tube has an outer diameter of 1.9 cm. The air enters the tube arrangement inlet at 2 m/s velocity. Calculate the heat transfer coefficient, coefficient of friction, and pressure drop inside the tube arrangement if: a) Using staggered tube arrangement with b) Using aligned tube arrangement witharrow_forwardHot fluid "C 2562 J/kg.k, Pr 51.3, u-5.22E-3 Pa.s, k0.260 Wm.K" flows af 0.8 kg/min inside a 3-mm diameter, thin walled tube. The tube is coiled and submerged in a water bath maintained at 23 C. The fluid experiences a temperature drop of 63°C and leaves the tube at 35 C. What is the required lengih of the tube "m Neglect heat transfer enhancement associated with the coiling. Assume ftlly developed flow, If turbulent flow use Dittus Boelter equation: Nn 0.023 Re Prarrow_forward
- Pinch temperature at hot stream is 70C, while at cold stream is 60Carrow_forwardA shell-and-tube heat exchanger is used to cool compressed liquid methanol from 176 °F to 104 °F. The methanol flows on the shell side of the exchanger. The coolant is water that rises in temperature from 50 °F to 86 °F and flows within the tubes at a rate of 68.9 kg s1. Finding the appropriate thermophysical data and applying the proper equations, you are required to do the following: (a) Calculate i) methanol mass flow rate in the exchanger, ii) methanol volumetric flowrate at the inlet of the exchanger. (b) i) For the counter-current flow of the fluids calculate the log temperature difference, ii) explain the purpose of calculating this difference, iii) explain, quantitatively, why is the counter-current flow in heat exchangers preferred to co-current flow. meanarrow_forwardQ) Compare the heat transfer coefficients under the following conditions (Assume flow is turbulent). (1) Two fold increase in the diameter of the tube; the flow velocity is maintained constant by a change in the rate of liquid flow. (2) Two fold increase in the flow velocity by varying the mass flow rate. Comment on. the results.arrow_forward
- Please show all steps, not Ai generated, has been wrong before. I need to understand the process.arrow_forwardI need answer within 20 minutes please please with my best wishesarrow_forwardthe title of the book: Engineering Thermofluids Thermodynamics, Fluid Mechanics, and Heat Transfer by: Mahmoud Massoudarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
First Law of Thermodynamics, Basic Introduction - Internal Energy, Heat and Work - Chemistry; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=NyOYW07-L5g;License: Standard youtube license