The onset of turbulence in a gas flowing within a circular tube occurs at
Want to see the full answer?
Check out a sample textbook solutionChapter 8 Solutions
Fundamentals of Heat and Mass Transfer
Additional Engineering Textbook Solutions
Introduction To Finite Element Analysis And Design
Applied Fluid Mechanics (7th Edition)
Engineering Mechanics: Dynamics (14th Edition)
Fox and McDonald's Introduction to Fluid Mechanics
INTERNATIONAL EDITION---Engineering Mechanics: Statics, 14th edition (SI unit)
Engineering Mechanics: Statics
- i need the answer quicklyarrow_forwardAtmospheric air at 20°C enters and fills an insulated tank thatis initially evacuated. Using a control volume analysis fromEq. compute the tank air temperature when it is full.arrow_forwardAir at 50 Kpa, 300 K, and Mach 2.0 passes through a normal shock. Determine: a) Total temperature and pressure upstream of the shock b) Total temperature and pressure downstream of the shock. I bakarrow_forward
- 2: Air (K=1.4) flows into a constant-area insulated duct with a Mach number of 0.20. For diameter coefficient of 0.02, determine the duct length required a duct of 1 cm and friction to reach Mach 0.60. Determine the length required to attain Mach 1. Finally, if an additional 75 cm is added to the duct length needed to reach Mach 1, while the initial stagnation conditions are maintained, determine the reduction in flow rate that would occur.arrow_forwardA reservoir of volume V with an ideal gas of molecular mass M and specific heat ratio k is initially at pressure p1 and temperature T1. The reservoir then begins to be supplied at constant flow m˙ and with the same gas, at the inlet temperature given by Te , also constant. (a) Calculate the time required for the final mass of the reservoir to increase by 4 times (m2 = 4m1); (b) Assuming the process is isothermal, calculate the time required for the pressure to from the reservoir increases by 4 times (p2 = 4p1), and calculate the rate at which heat is removed from the reservoir. reservoir Q˙ r ; (c) Assuming that the process is adiabatic, calculate the time required for the pressure of the reservoir increases by 4 times (p2 = 4p1). Calculate the final temperature T2 for this situation.arrow_forward1:07 GAS CH 4 HW 1.pptx > 1. Air is flowing isentropically through a converging duct which is fed from a large reservoir where the temperature and 250 kPa, pressure are 350 K and respectively. At a certain point along the duct, where the cross-sectional area is 0.005 m, the pressure is 150 kPa. Determine the Mach number, temperature and velocity at that point and also calculate the mass flow rate. (Ans: 330.1 K, 0.549, 162.8 kPa, 1.718 kg-s"). 2. Air is supplied to a converging nozzle from a large reservoir where the temperature and pressure are 400 K and 100 kPa, respectively. At a certain cross-section, the temperature and pressure are measured to be 383.8 K and 63 kPa, respectively. Assuming isentropic flow, find the Mach number at this cross- section and the mass flow rate per unit area. (Ans: 0.46, 103.3 kg-s'-m²). 3. A converging nozzle is fed with air from a large reservoir where the temperature and pressure are 400 K and 170 kPa, respectively. The nozzle has an exit…arrow_forward
- Air enters a 5-cm-diameter duct at Mach number = 0.2, a temperature of 550 K and a pressure of 200 kPa. The average friction factor for the duct is 0.016. If the Mach number at the duct exit is 0.8, determine the pressure at the duct exit. (For air constant R = 287 J/kg.K, specific heat ratio K = 1.4). Select one: a. 65.95 kPa b. 54.85 kPa c. 80.75 kPa d. 47.27 kPaarrow_forwardFor non-isentropic constant-area flow with stagnation temperature change the following relation was determined: Y 1 To _ ²(y + 1)M² (1 + ¹ Z ¹ M²) 2 TO (1+yM²)² It is possible to use the above equation and calculate the downstream Mach number without resorting to iteration for a flow where the upstream Mach number, as well as the upstream and downstream stagnation temperatures, are known. This is a common calculation for flows through engine combustors. Presuming the left side is a known quantity, show that the above equation can be directly solved as a quadratic in M² and which roots correspond to the subsonic/supersonic solution. Rewrite the equation as: aM4 + bM² + c = 0, and then M² = (−b ± √b² - 4ac)/2a. Determine the appropriate expressions for a, b, and c.arrow_forwardA long pipe of 0.0254 m diameter has a mean coefficient of friction of 0.003. Air enters the pipe at a mach number of 2.5, stagnation temperature 310 K and static pressure 0.507 bar. Determine for a section at which the mach number reaches 1.2: i) Static pressure and temperature, ii) Stagnation pressure and temperature, iii) Velocity of air, iv) Distance of this section from the inlet and v) mass flow rate of air.arrow_forward
- For supersonic and hypersonic wind tunnels, a diffuser efficiency, ηD,can be defined as the ratio of the total pressures at the diffuser exit andnozzle reservoir, divided by the total pressure ratio across a normal shockat the test-section Mach number. This is a measure of the efficiency ofthe diffuser relative to normal shock pressure recovery. Consider asupersonic wind tunnel designed for a test-section Mach number of 3.0which exhausts directly to the atmosphere. The diffuser efficiency is 1.2.Calculate the minimum reservoir pressure necessary for running thetunnel.arrow_forwardAir flows isentropically at a rate of 1.3 kg/s from a large chamber through a convergent- divergent duct and leave to the outlet at Mach number 2.72. The air velocity, pressure OUTM EXAMINATION SESSION 2020/2021 (a) Sketch the system and label all components with subsonic/supersonic and UTM N 2020/2021 TM FINAL EXAMIN 2020/2021 answer. 2020/2021 st TION STAL EXAMINATION SEMESTAR I, SESSJO , SESSIOVON 3, SERIONON Esto ON b/202 2020/202 and temperature at a location somewhere along the system were found to be 900 m/s, OUTM 150 kPa and 60°C, respectively. FINAL EXAMINATIC SEMESTER IL SESSION 2025/202 RATION 2020/2021 FINAL EXAMINA BEMENTER I SESSION 2020/202 diffuser/nozzle according to the effect of area change. Justify your ALE eSTER R, SESSION 202b/202 (b) Determine the pressure and temperature of the air in the large chamber, the area at throat, and the velocity at outlet. zb/202arrow_forwardI need the answer as soon as possiblearrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY