A BJT emitter follower is coupled to a load with an ideal transformer, as shown in Figure P8.35. The bias circuit is not shown. The transistor current gain is
Figure P8.35
Want to see the full answer?
Check out a sample textbook solutionChapter 8 Solutions
Microelectronics: Circuit Analysis and Design
- In a full-bridge dc-dc converter using PWM bipolar voltage switching, analytically obtain the value of (V/V) which results in the maximum (peak-peak) ripple in the output current i,. Calculate this ripple in terms of Va, La, and farrow_forwardQ.1) Consider a step down converter with a resistive load. It is supplied by a DC power source of magnitude Vs = 160 V. The switching period is 0.25 ms and the duty cycle k is first set to 0.5. The load is resistive with R=10 Ohms. The critical value of L and the critical value of C are equal to: a. 0.625mH and 0.392uF b. 0.625mH and 0.196uF c. 0.312mH and 0.196uF d. None of thesearrow_forwardI need help pls. I will give thumbs uparrow_forward
- 9. Design a biased-transistor circuit using VBB = Vcc= 10 V for a Q-point of Ic = 5 mA and VCE 4 V. Assume pc = 100. The design involves finding RB, RC, and the minimum power rating of the transistor. (The actual power rating should be greater.) Sketch the circuit.arrow_forwardQUESTION 4 In this voltage divider bias circuit, the input is at the base. Output is at the emitter with a high input resistance and low output resistance. The maximum voltage gain is 1 and the coupling capacitors must have a negligible reactance at the frequency of operation. (use to answer a and b) a. Derive the expression for the voltage gain, current gain, and power gain in terms of power delivered to the load, RL. b. Sketch both the DC and AC equivalent circuits. c. Derive the expression for ripple factor of Half Wave Rectification with a capacitor filter.arrow_forward2. A transformer-coupled class A amplifier drives an 8-ohm speaker through a 4:1 transformer. Using a power supply of Vcc = 36 V, the circuit delivers 3 W to the load. a. Calculate the following: i. Piecj across transformer primary. ii. Vuscd- ii. Vjac) at transformer primary. iv. The rms values of load and primary current. b. Draw the circuit diagram of a class A transformer-coupled amplifier using an npn transistor.arrow_forward
- 1. The DC-DC converter has several circuit configurations. a) (Draw a simple connection of IGBT switch, diode and inductor that can discriminate between Buck, Boost and Buck-Boost converter circuits respectively.) b) ('A Boost converter produces an output voltage, Vo that is more than or equal to the input voltage, Vi. Based on this statement develop the equation for the relationship between Vo Viand D. where D represents the duty ratio. You can use any suitable diagram to illustrate your answer.)arrow_forwardCompare hybrid model circuit and re model circuits. Which circuit are you going to recommend in solving AC signal amplifier stage. Defend your answerarrow_forwardGiven the following details: The inverting adder schematic as seen below Vac is an AC voltage source which generates a sine waveform with amplitude 1mV and frequency 1kHz Vout is a sine waveform with amplitude 1V and has a DC offset of 3.5V Find the values of Vdc, R1, R2 and Rf that would satisfy the description for Vout. Assume ideal scenario (i.e. do theoretical computations instead of practical simulations)arrow_forward
- a) Given the choice between a MOSFE Open with for a high voltage application. State your selection with reasons. b) The parameters for the power MOSFET in the circuit shown in the Figure 1 are as follows: rise time, t₁ =2 µs; on resistance, Ros(on) = 0.202; duty cycle, D = 0.7; and switching frequency, f = 30 kHz. Determine: i. the power-loss in the on state. ii. the power-loss during the turn-on interval. Vos 100 V ID D S R₁ = 120 Figure 1 c) Draw a clearly labeled diagram of the thermal equivalent circuit of a transistor. d) The maximum junction temperature of a power transistor is T; = 150 °C and the ambient temperature is T₁ = 25 °C. If the thermal impedances are Rjc = 0.4 C/W, Rcs=0.1 °C/W, and RSA = 0.5 °C/W. Calculate, i. the maximum power dissipation. ii. the case temperature.arrow_forwardThis problem is AC analysis problem. DC analysis is not needed to answer the question. A) Convert this bias circuit into a bypassed common emitter amplifier that has an output across a load resistor (RL). To do this you should draw three capacitors on the figure below, an input voltage source, and any resistors you think that should be added. B) In the space below the figure, Draw the hybrid t model for this amplifier circuit including all voltages and resistors. Label Vi, Vbe, and vo on the model. Assume the capacitors you add act as short circuits at AC. Be sure to include resistors R1, R2, R3, R4, and RL in the hybrid pi model. > When you "verify" a mode of operation you will need to calculate all three voltages (Vc, Ve, VE for BJTS and VG, Vs, Vo for MOSFETS) and show the correct two conditions are satisfied. > Assume Capacitors acts like open circuits at DC and short circuits for AC. 12V Assume the following: o Beta = 100 O VBE = 0.7 o V: (Thermal) = 26 mV o Vr (Threshold) = 2V O…arrow_forwardPart 1) Consider a step down converter with a resistive load. It is supplied by a DC power source of magnitude Vs = 160 V. The switching period is 0.25 ms and the duty cycle k is first set to 0.5. The load is resistive with R=10 Ohms. The critical value of L and the critical value of C are equal to: a. 0.625mH and 0.392uF b. 0.625mH and 0.196uF c. 0.312mH and 0.196uF d. None of these Part2) Now consider the same given but the load is an inductive load with R=10 Ohms and L=10 mH. The switch is ideal. Calculate The RMS load current Io and the RMS converter current Ir are equal to: Select one: a. 5A and 3.54A b. None of these c. 8A and 5.66A d. 12.5A and 8.84Aarrow_forward
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,