Concept explainers
(a)
Thevalue of the voltage
(a)
Answer to Problem 8.26P
The value of the voltage
Explanation of Solution
Calculation:
The given diagram is shown in Figure 1
The conversion from
The expression for the collector current is given by,
Substitute
The expression for the base emitter voltage of the NPN transistor for no input voltage is given by,
The expression for the base emitter voltage for the PNP transistor for zero input voltage is given by,
From the above equation and equation (1).
Substitute
The expression for the power dissipated in the transistor is given by,
Substitute
Conclusion:
Therefore, the value of the voltage
(b)
The value of the power dissipated in
(b)
Answer to Problem 8.26P
The value of
Explanation of Solution
Calculation:
The expression for the value of the load current is given by,
Substitute
The expression for the current through the PNP transistor is given by,
Substitute
The conversion from
The conversion from
The expression for the value of the base to emitter voltage of PNP transistor is given by,
Substitute
The expression to determine the value of the base emitter voltage of the NPN transistor is given by,
Substitute
The expression for the collector current of the NPN transistor is given by,
Substitute
The expression for the value of collector current of PNP transistor is given by,
Substitute
Apply KVL at the input terminals of the given figure.
Substitute
The expression for the power dissipated in the load is given by,
Substitute
The expression for the value of power dissipated in the transistor is given by,
Substitute
The expression for the power dissipated in the PNP transistor is given by,
Substitute
Conclusion:
Therefore, the value of
Want to see more full solutions like this?
Chapter 8 Solutions
Microelectronics: Circuit Analysis and Design
- When operated in cutoff and saturation, the transistor acts like a) A linear amplifier b) A switch c) A variable capacitor d) A variable resistor The average output value of half wave rectified voltage with a peak input of 200V is equal to (assume silicon diode) a) 63.66 V b) 127.32 V c) 63.47 V d) 127.101 V The term "Bipolar" in Bipolar Junction Transistor (BJT) refers to a) Two junctions b) Two Diodes c) Two polarity carriers (electrons & holes) d) Two resistancesarrow_forwardA Bipolar junction Transistor with curreat amplification factor being 100, Input Base current is 50μA. Collector voltage is 10 V and biasing voltage being +20 V. Find followings a. Collector current b. Resistance (R1) c. Collector voltage , Emitter voltage , Base Voltage & Collector-Emitter Voltage.arrow_forwardi need the answer quicklyarrow_forward
- b) Consider the transistor circuit as shown in figure 8. The emitter area of the transistor Q2 is 20 times the other transistors. Calculate the value of Ic, and Ic,.Assume that the ß of the transistor is very high. SmA Q1 Ic2 Q2 Figure 8arrow_forwardBipolar Junction Transistor Briefly discuss the results on the table, and the resulting graph below. Is the graph shown above follow the characteristics curve of the transistor?arrow_forwardA base bias method is used in the following circuit. For Bpc - 300, the value of emitter current is: -Vc. +15 V Rc 1.8 k2 RB 560 k2 7.82 mA O 6.84 mA O 7.27 mAarrow_forward
- Assume Icq = 3mA, Vceq = 10V for the given transistor circuit. %3D Find the R1 and Rc values. 22V Rc R1 Text 10uF 10uF 20 k2 31.2 k2arrow_forwardExample 7 Rc 100N Determine IB , IC , IE , VBE, VCE, and VCB in pou P Rg Vcc the circuit. The transistor has a BDC = 150. 10 V 10 kN VBB 5 Varrow_forward1-The output voltage of an emitter follower is a-In phase with Vin . b-Much greater than Vin. c-180° out of phase. d-Generally much less than Vin • 2-The ac emitter resistance of an emitter follower a-Equal the de emitter resistance. b-Is larger than the load resistance. c-Is B times smaller than the load resistance. d-Is usually less than the load resistance. 3-A common-base amplifier can be used when a-Matching low to high impedance. b-A voltage gain without a current gain is required. c-A high- frequency amplifier is needed. d-All of the above. 4-If the voltage generator is 5 mV in an emitter follower, the output voltage across the load is closest to a-5 mV. b-150mV. c-0.25 mV. d-0.5 mV.arrow_forward
- Determine VB, VE, VC, VCE, IB, IE, and IC in Figure. The 2N3904 is a general purpose transistor with a typical BDC 200 Vcc +30 V WWII VCE VB R₁ • 22 ΚΩ IC(mA) Chọn... * Chọn... * IB(UA) Chọn... * IE(MA) Chọn... ◆ Chọn... * Chọn... * Chọn... * VE VC R₂ ´ 10 ΚΩ www Rc 1.0 ΚΩ 2N3904 PDC=200 RE 1.0 ΚΩarrow_forwardTOPIC: BIPOLAR JUNCTION TRANSISTOR (BJT)arrow_forwardQ2 Design a voltage divider bias circuit for an npn silicon transistor having B %D 100 to be used in a Common Emitter configuration. The quiescent point = 1 mA, VCE = 5 V. The supply voltage (Vcc) is 15 V. (Q point) is to be l. Assume VĘ = 0.1Vcc and BRĘ 2 10R2. (a)Find all the resistors values and draw the schematic diagram of this Common Emitter Amplifier with bypass capacitor CE.arrow_forward
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,