
(a)
Interpretation:
The electron configuration for elements with single unpaired electrons and with an
Concept Introduction:
The electronic configuration is defined as the distribution of electrons in various atomic orbitals of the atom. The electrons that are present in an outermost orbital are known as valence electrons whereas those present in the orbitals with lower quantum numbers are called core electrons. The general outer electronic configuration of
Electrons are filled in orbitals in accordance with three rules: Aufbau principle, Hund’s rule, and Pauli’s exclusion principle. Aufbau principle states that electrons are filled in the orbitals from lower to higher energy level as follows:
Hund’s rule states that initially each orbital is singly occupied and then pairing occurs and Pauli’s exclusion principle states that the spin of two electrons in one orbital is always different.
(a)

Explanation of Solution
The electronic configuration for elements with an atomic number less than 10 is as follows:
According to Hund’s rule, initially each orbital is singly occupied and then pairing occurs in the filling of an electron in the same subshell.
Therefore, the single unpaired electrons are present in elements with atomic numbers 1, 3, 5, and 9.
(b)
Interpretation:
The electron configuration for the element with completely filled subshells and with an atomic number less than 10 has to be determined.
Concept Introduction:
Refer to part (a).
(b)

Explanation of Solution
The electronic configuration for elements with an atomic number less than 10 is as follows:
Therefore, the fulfilled subshell electron configuration is present in elements that have atomic numbers 2, 4, and 10.
(c)
Interpretation:
The electron configuration for elements with two unpaired electrons and with an atomic number less than 10 has to be determined.
Concept Introduction:
Refer to part (a).
(c)

Explanation of Solution
The electronic configuration for elements with an atomic number less than 10 is as follows:
According to Hund’s rule, initially each orbital is singly occupied and then pairing occurs in the filling of an electron in the same subshell.
Therefore, the two unpaired electrons are present in
Want to see more full solutions like this?
Chapter 7 Solutions
Chemistry: Principles and Practice
- A covalent bond is the result of the a) b) c) d) e) overlap of two half-filled s orbitals overlap of a half-filled s orbital and a half-filled p orbital overlap of two half-filled p orbitals along their axes parallel overlap of two half-filled parallel p orbitals all of the abovearrow_forwardCan the target compound at right be efficiently synthesized in good yield from the unsubstituted benzene at left? starting material target If so, draw a synthesis below. If no synthesis using reagents ALEKS recognizes is possible, check the box under the drawing area. Be sure you follow the standard ALEKS rules for submitting syntheses. + More... Note for advanced students: you may assume that you are using a large excess of benzene as your starting material. C T Add/Remove step X ноarrow_forwardWhich one of the following atoms should have the largest electron affinity? a) b) c) d) 으으 e) 1s² 2s² 2p6 3s¹ 1s² 2s² 2p5 1s² 2s² 2p 3s² 3p² 1s² 2s 2p 3s² 3p6 4s2 3ds 1s² 2s² 2p6arrow_forward
- All of the following are allowed energy levels except _. a) 3f b) 1s c) 3d d) 5p e) 6sarrow_forwardA student wants to make the following product in good yield from a single transformation step, starting from benzene. Add any organic reagents the student is missing on the left-hand side of the arrow, and any addition reagents that are necessary above or below the arrow. If this product can't be made in good yield with a single transformation step, check the box below the drawing area. Note for advanced students: you may assume that an excess of benzene is used as part of the reaction conditions. : ☐ + I X This product can't be made in a single transformation step.arrow_forwardPredict the major products of this organic reaction:arrow_forward
- Name the family to which each organic compound belongs. The first answer has been filled in for you. compound CH₂ || CH3-C-NH2 0 ။ CH3-C-CH₂ CH=O–CH=CH, CH₂ HO CH2-CH2-CH-CH3 family amine Darrow_forward1b. Br LOHarrow_forwardI would like my graphs checked please. Do they look right? Do I have iodine and persulfate on the right axis ?arrow_forward
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning





